

Service Profiling in
Business to Business
Web Services

Bas Jansen

Thesis for a Master of Science degree in Electrical
Engineering from the University of Twente,
Enschede, The Netherlands

Graduation Committee:

Dr. ir. M. van Sinderen (University of Twente)

Dr. J. Pereira Filho (University of Twente)

Dr. L. Klostermann (Ericsson)

Ir. E. van der Velden (Ericsson)

Ing. E. Boersma (Ericsson)

Enschede, The Netherlands

December 2003

Service Profiling in Business to Business Web Services

 i

Abstract

It is a general trend that telecommunication and information technology are
converging. This development enables new business opportunities for
telecom operators: they can give application developers access to telecom
capabilities by offering services like SMS and MMS messaging, call control,
location based services, etc.

Web services are foreseen to be the dominant technology for business to
business interactions over the Internet. Therefore the research starts with a
state of the art overview on the large number of web services (related)
specifications and standards, development and standardization, and web
services initiatives in the telecom area.

When a business offers a service to another business, that service is usually
a process involving other services where each fulfills a part of the overall
business and technical requirements. Making services using such a process
is called service profiling.

The main purpose of this research is to identify a suitable technique that can
be used for service profiling. Four different technologies (BPEL, WSCI, Axis
and a proprietary Java solution) are compared based on a set of functional
and non-functional criteria. BPEL was found to be the most suitable and
promising technique.

A prototype of a service profiling environment using BPEL was built. That
prototype showed that BPEL is indeed suitable for service profiling, but it also
showed some limitations when using BPEL for this purpose. Based on that
experience, a number of improvements for BPEL are suggested to overcome
the limitations. It is possible that these limitations will be resolved in a future
BPEL version.

This report ends with the recommendation for Ericsson to watch BPEL closely
as it is still in a premature phase (not suitable for telecom grade applications)
but a very promising technique for service profiling in business to business
web services, not only from a technical but also from a business perspective.
Also, a market study needs to show if operators are willing to adopt this new
approach in service offering and exact requirements need to be specified.

Service Profiling in Business to Business Web Services

 ii

Service Profiling in Business to Business Web Services

 iii

Preface

This thesis describes the results of a Master of Science assignment
performed under the supervision of the Architecture of Distributed Systems
group of the faculty of Electrical Engineering, Mathematics and Computer
Science at the University of Twente. This assignment has been carried out
from March to December 2003 at Ericsson Telecommunicatie BV in Rijen, the
Netherlands.

I would like to thank Jan van der Meer, Lucas Klostermann, Erik van der
Velden and Eltjo Boersma for giving me the opportunity to do this assignment
at Ericsson and for their support and feedback during the assignment.
Furthermore I would like to thank Marten van Sinderen and José Gonçalves
Pereira Filho for their help and suggestions throughout the assignment.

Also, I want to thank everyone at Ericsson for making my stay in Rijen a very
pleasant and informative experience, my fellow founders of Monito Online
Applicaties for not having to spend too much time on work for Monito, and my
girlfriend Judith Schevers for supporting me in this busy time.

Enschede, The Netherlands, December 2003.

Bas Jansen.

Service Profiling in Business to Business Web Services

 iv

Service Profiling in Business to Business Web Services

 v

Table of contents

1 Introduction ...1
1.1 Motivation ..1
1.2 Objectives..2
1.3 Approach ...2
1.4 Structure..3

2 Web services ...5
2.1 What is a web service? ...5
2.2 Basic standards...5
2.3 Additional web service standards..7
2.4 Development and standardization...14
2.5 Related standards ...15
2.6 Web services in telecom ...18
2.7 Discussion ...20

3 Service profiling ..21
3.1 Introduction..21
3.2 Example ..21
3.3 Architecture ...22

4 BPEL...25
4.1 Introduction..25
4.2 How it works ..26
4.3 IPR and licensing ..29
4.4 Implementations ..29
4.5 Architecture ...29
4.6 Discussion ...30

5 WSCI ...31
5.1 Introduction..31
5.2 How it works ..31
5.3 IPR and licensing ..33
5.4 Architecture ...33
5.5 Discussion ...34

6 Axis...35
6.1 Introduction..35
6.2 How it works ..35
6.3 IPR and licensing ..37
6.4 Architecture ...37
6.5 Discussion ...38

7 Java ..39
7.1 Introduction..39
7.2 How it works ..39
7.3 IPR and licensing ..39
7.4 Architecture ...40
7.5 Discussion ...40

8 Comparison ...41
8.1 Introduction..41
8.2 Functional aspects ..41
8.3 Non-functional aspects..43
8.4 Overview ...44

Service Profiling in Business to Business Web Services

 vi

9 Prototype ... 47
9.1 Introduction ... 47
9.2 The Collaxa BPEL server ... 47
9.3 Designing, deploying and testing a BPEL process 48
9.4 Example SendSMS process ... 52
9.5 Testing the process .. 56
9.6 Discussion .. 57

10 Limitations and improvements.. 59
10.1 Introduction ... 59
10.2 BPEL limitations.. 59
10.3 Improvements ... 60

11 Conclusions and recommendations... 61
11.1 Conclusions .. 61
11.2 Recommendations.. 61

References .. 63
List of abbreviations... 67
Appendix 1: SendSMS BPEL source .. 69
Appendix 2: SendSMS WSDL.. 73
Appendix 3: How to install the software... 75

Service Profiling in Business to Business Web Services

 1

1 Introduction

This chapter presents the motivation and objectives of this thesis, a general
introduction to service profiling and web services, and a brief overview of the
structure of this report.

1.1 Motivation

Telephone and IT are converging. Nowadays it is common to send and
receive SMS messages from a computer or website, to read your e-mail or
browse web sites on your mobile phone or to set your phone preferences via
a website. But the most interesting applications are still to come with the
introduction of location based services, context aware applications, audio and
video capabilities in mobile phones, and so on.

Because of these exciting new applications, telecom operators are looking
into ways to 'open up the network' to give application developers access to
telecom capabilities like SMS and MMS messaging, call control, etc. Most of
the interfaces to these telecom capabilities today are based on telecom
oriented (proprietary) APIs (Application Programming Interfaces).
Standardization of these interfaces takes place in for example Parlay/OSA
(Open Service Access or Open Service Architecture) [parlay].

Exposing telecom capabilities has two main drives: encourage innovation in
the application area and enable new business scenarios for telecom
operators and ASPs (Application Service Providers). Some efforts are mainly
focused on the first point (e.g. JAIN), other efforts (especially Parlay and
3GPP OSA [3gpp]) focus on a combination of the two.

By providing application developers with APIs and protocols the number of
developers that are able to develop applications increases dramatically,
compared to traditional IN (Intelligent Networking) development. By exposing
telecom capabilities, it becomes possible to develop applications mixing data
communication (datacom) and telecommunication (telecom) features.

By exposing capabilities, but also provide support for controlled access to the
capabilities, operators are able to sell access to both their network capabilities
and their subscribers to external parties like ASPs. In addition, operators can
allow others to provide part of the service portfolio for their subscribers, and
can provide additional network capabilities to enterprise applications.

The last few years the main players in the IT industry have put a lot of effort
on the development of XML web services, a platform independent technology
for applications to discover and interact with other applications over the
internet using XML messages. It is foreseen that these web services will
eventually become the dominating technology for business to business (B2B)
interactions.

This gives the telecom operators the opportunity to expose their assets via a
web service interface, thus becoming players in the IT application market. The
telecom industry is taking this avenue by among other things standardization
efforts like Parlay/X web services and OMA (Open Mobile Alliance) [oma] web
services.

Service Profiling in Business to Business Web Services

 2

In a market where an operator is a web service provider, it is important for
operators that they are able to offer customized services, tailored to both their
own and their customers' needs.

An offered service usually consists of a set of services that are invoked in a
specific order. A service offering for sending SMS messages may consist of a
logging service, charging service, privacy check service, and of course an
SMS message sending service. In this example, the SMS message sending is
the base service, while the other services are called auxiliary services. Linking
these base and auxiliary services together is called service profiling. The
service profiling process is the document or script that describes how these
services are linked together. Using service profiling a (web) service provider
can offer services to service consumers that are tailored to both business and
technical requirements of the service provider and consumer.

1.2 Objectives

The purpose of this assignment is to analyze what technique(s) can best be
used for service profiling in a telecom environment. The scope is limited to
services implemented on the J2EE platform with an XML web service
interface. Four different techniques will be reviewed and compared. These
are:

• BPEL, the Business Process Execution Language for web services,
possibly combined with additional web service standards like WS-Security
and WS-Transaction

• WSCI, the Web Services Choreography Interface, possibly combined with
additional web service standards like WS-Security and WS-Transaction

• Axis, the open source web service implementation on J2EE of the Apache
project, provides a kind of service profiling solution through a 'handler'
solution

• A proprietary Java (J2EE platform) solution

Furthermore, limitations will be identified and improvements to overcome
those limitations will be suggested.

1.3 Approach

The four different techniques will be assessed and compared with respect to a
number of functional and non-functional criteria. The functional criteria state
that a service-profiling environment should include support for:

• Choreography to dynamically combine base and auxiliary services

• Orchestration to execute the base and auxiliary services in a specific
order because of possible data or control dependencies

• Transactions, specifically atomic transactions (following the 'all-or-nothing'
principle) for a reliable and robust service offering

• Service lifecycle management for easy offering of a new variant of an
existing service, introducing new services or revoking service offerings

Service Profiling in Business to Business Web Services

 3

• Online choreography and orchestration so actual execution path of the
process behind the service is determined the moment the service is used
(runtime) and not when the service is deployed (deploy time)

• The service consumer must not be aware of the whole service profiling
process (i.e. the interface to the service profiling process should be a web
service itself)

The non-functional criteria are:

• Performance

• Availability of existing solutions

• Industry support for used standards

These criteria will be further explained in chapter 8 where the techniques are
compared using these criteria.

As a proof of concept, a limited prototype of the most promising technique will
be implemented. A number of test scenarios will be deployed to see if that
technique is indeed suitable for service profiling.

Since the service profiling will take place in a telecom environment with high
demands with respect to performance and availability, the prototype will be
examined whether it supports SLA (Service Level Agreements) enforcement,
dynamic updates and service lifecycle management.

1.4 Structure

Chapters 2 and 3 provide general information about web services and service
profiling. Chapter 2 contains an overview and state-of-the-art of the web
services area, with a focus on web services in the telecom industry.

Chapters 4 to 7 discuss the different technologies that are compared, while
chapter 8 covers a summary of the comparisons. Chapter 9 contains a
description of the prototype that is implemented with the best technique
according to chapter 8.

Based on the experience gained during the research, chapter 10 will identify
the limitations of the technique used for the prototype and suggest
improvements.

Finally, chapter 11 contains the conclusions regarding service profiling and
some recommendations for Ericsson in this area.

Service Profiling in Business to Business Web Services

 4

Service Profiling in Business to Business Web Services

 5

2 Web services

This chapter gives a state-of-the-art overview of web services. First, the basic
standards that are the basis of all web services are introduced. Then a
number of additional web service standards and (proposed) specifications are
discussed. These additional standards cover aspects of web services in the
area of business processes, security, messaging, reliability, etc. Section 2.4
describes the development and standardization of web services, followed by
the discussion of a number of related (upcoming) standards. Section 2.6
provides an overview of web services initiatives in the telecommunications
industry.

2.1 What is a web service?

The W3C Web Services Architecture Working Group defines a web service as
follows:

A Web service is a software system identified by a URI, whose public
interfaces and bindings are defined and described using XML. Its definition
can be discovered by other software systems. These systems may then
interact with the Web service in a manner prescribed by its definition, using
XML based messages conveyed by Internet protocols.
http://www.w3.org/TR/ws-gloss/
W3C Web Services Architecture Working Group, November 2002

So web services are basically a way for applications to discover and interact
with other applications over the Internet using XML.

2.2 Basic standards

A web service architecture consists of three primary functions: discovery,
description and transport. For each of these functions there is an XML based
standard. Web services are described by the Web Services Description
Language (WSDL), discovered though Universal Description, Discovery and
Integration (UDDI) and transported using the Simple Object Access Protocol
(SOAP).

2.2.1 WSDL

The Web Services Description Language (WSDL) is an XML-based language
for describing web services. A WSDL document defines services as
collections of network endpoints, or ports, and describes the message
interactions. A WSDL document consists of the following elements to describe
a service:

• Types, data type definitions to describe the messages exchanged

• Messages, an abstract definition of the exchanged data messages

• Operations, specifying the input and/or output messages

• Port types, a named set of abstract operations

Service Profiling in Business to Business Web Services

 6

• Bindings, defines message format and protocol bindings for a particular
port type

• Ports, for associating a binding to an actual service endpoint address

• Services, a set of ports.

Specification Version and status Editor(s) Standardization
WSDL 1.1, W3C Note, March 15, 2001 Ariba, IBM, Microsoft W3C
 1.2, W3C Working Draft, November

10, 2003
Sun, Microsoft, IBM, Canon W3C

Table 2-1: Overview of WSDL specifications

2.2.2 UDDI

Universal Description, Discovery and Integration (UDDI) [uddi] is an XML
based registry where web service providers can register their web service and
web service consumers can search for suitable web services. UDDI registries
can act as a global directory for web services.

A listing in a UDDI registry consists of three elements. At the highest level
there are White Pages, which contain basic information about the providing
company and its services. Next are Yellow Pages, which organize services by
industry, service type or geographical location. Finally there are Green Pages,
which include the technical mechanics (for example, a link to the WSDL)
about how to find and execute a Web service [govatos].

UDDI was developed by IBM, Microsoft and Ariba, and is now under
supervision by a technical committee of the Organization for the
Advancement of Structured Information Standards (OASIS). Version 3 is the
most current version although version 2 is still most widely used.

Specification Version and status Editor(s) Standardization
UDDI 2, OASIS Open Standard, July 19,

2002
IBM, BEA, Microsoft, HP, Sun,
Verisign, others

OASIS

 3, OASIS Committee Specification,
July 19, 2002

IBM, Microsoft, HP, Oracle,
SAP, Sun, Verisign, others

OASIS

 3.01, OASIS Committee
Specification, October 14, 2003

IBM, Microsoft, SAP, France
Telecom, Oracle, others

OASIS

Table 2-2: Overview of UDDI specifications

2.2.3 SOAP

The Simple Object Access Protocol (SOAP) [soap] describes the XML
documents and processing model that are used in the message exchange
between web services and web service users. A SOAP message consists of
an envelope containing a header and a body part. SOAP messages can be
transported over a variety of transport protocols. However, HTTP over TCP/IP
is most widely used.

A SOAP sender sends SOAP messages to an ultimate SOAP receiver via
zero or more SOAP intermediaries. A SOAP node acts in one or more roles
when processing a SOAP message. SOAP header blocks can be targeted to
be processed by a node with a specific role.

Service Profiling in Business to Business Web Services

 7

The SOAP Processing Model defines a distributed, stateless processing
model for SOAP messages. When a node receives a SOAP message, it first
has to determine what roles apply. Then all mandatory header blocks targeted
at the node are identified and checked if the nodes understand them. Then
the SOAP header blocks and, only in case the node is the ultimate receiver,
the SOAP body are processed. If the node is not the ultimate receiver, the
SOAP message is sent further down the SOAP message path.

Specification Version and status Editor(s) Standardization
SOAP 1.1, W3C Note, May 8, 2000 IBM, Microsoft, Lotus,

DevelopMentor, UserLand
W3C

 1.2, W3C Recommendation, June
24, 2003

Microsoft, Sun, IBM, Canon W3C

Table 2-3: Overview of SOAP specifications

2.3 Additional web service standards

Although the basic web service specifications UDDI, WSDL and SOAP
provide the basic means for web service description, discovery, invocation
and message transport, a lot of issues like security, reliability, transactions,
etc. are not addressed in those specifications. Therefore additional web
service specifications have been defined and are still being developed today.
These additional specifications will be discussed in the next sections.

2.3.1 Business processes

There are two main upcoming standards for linking several web services
together (choreography) and execute them in a specific order because of
possible data or control dependencies (orchestration): the Business Process
Execution Language for Web Services (BPEL4WS, often pronounced as
"beepel") [bpel1.1] and the Web Service Choreography Interface Language
(WSCI, pronounced as "whiskey") [wsci].

The first BPEL4WS development was done by Microsoft, IBM and BEA
Systems, joined later on by Siebel Systems and SAP. For a long time this
standard was not submitted to a standardization body because Microsoft had
made no decision whether they wanted to offer the standard on a royalty-free
basis [berlind]. But recently, the OASIS Web Services Business Process
Execution Language (WSBPEL) Technical Committee was formed to continue
the work on the BPEL4WS specification. For more information, see the
chapter about BPEL.

WSCI has been submitted to W3C a lot earlier to form the W3C Web Services
Choreography Working Group. Because of the submission of BPEL4WS to
OASIS, the W3C Working Group is inviting BPEL TC members to its meetings
to coordinate efforts. For more information, see the chapter about WSCI.

Specification Version and status Editor(s) Standardization
BPEL4WS 1.0, initial public draft, July 31,

2002
Microsoft, IBM, BEA

 1.1, second public draft, March 31,
2003

Microsoft, IBM, BEA, Siebel
Systems, SAP

OASIS

WSCI 1.0, W3C Note, August 8, 2002 BEA, Intalio, SAP, Sun, W3C W3C
Table 2-4: Overview of business process related web service specifications

Service Profiling in Business to Business Web Services

 8

2.3.2 Security

Security is an important aspect of web services, since services will be
exposed over the (public) Internet. The Web Services Security (WS-Security)
[wssecurity] specification adds security features to web services by extending
SOAP messages with standard XML security technologies such as XML
encryption and XML digital signatures. The specification does not specify any
implementation specifics such as PKI or Kerberos. WS-Security provides
message integrity, message confidentiality and single message authentication
and forms the foundation for other WS-Security standards (refer to figure 2-1).
The Web Services Security Addendum (WS-Security Addendum) describes
clarifications, enhancements, best practices, and errata of the WS-Security
specification.

Figure 2-1: WS-Security architecture [della-libera]

The main additional specifications of the WS-Security architecture are listed
below. Since WS-Security is a composable architecture, not all specifications
need to be used by all web services. Note that not all specifications have
been publicly published already [wssecurity].

• WS-SecureConversation describes how to manage and authenticate
message exchanges, establish and share security contexts, and derive
session keys from security contexts.

• The Web Services Policy Framework (WS-Policy) [wspolicy] provides a
model and syntax to express policies (service requirements, preferences
and capabilities) of a web service. The Web Services Policy Assertions
Language (WS-PolicyAssertions) specifies a set of common message
policy assertions that can be specified within a policy, while the Web
Service Policy Attachment (WS-PolicyAttachment) specification defines
how to associate policy expressions with WSDL type definitions and UDDI
entries.

• WS-SecurityPolicy is an addendum to WS-Security and indicates the
policy assertions for WS-Policy that apply to WS-Security.

• WS-Federation defines mechanisms that are used to enable identity,
attribute, authentication, and authorization federation across different trust
realms. The WS-Federation specification defines the model and
framework for federation. Additional profiles define in detail how different

SOAP

WS-Security

WS-
SecureConversation

WS-Federation WS-Authorization

WS-Policy WS-Trust WS-Privacy

Service Profiling in Business to Business Web Services

 9

requestors apply the model. Presently, two profiles have been defined:
active (SOAP enabled applications) and passive (web browsers etc.)
requestors.

• WS-Trust defines a model for requesting and issuing security tokens and
for management of trust relationships.

• WS-Authorization will define how access policies for web services are
specified and managed.

• WS-Privacy will provide a model for how a privacy language (like P3P)
can be used with WS-Policy and WS-Security and how privacy statements
can be evaluated using WS-Trust.

The Web Services Security Profile for XML-based Tokens (WS-Security
Tokens) describes how to use XML-based tokens such as the Security
Assertion Markup Language (SAML) or the eXtensible rights Markup
Language (XrML) with the WS-Security specification.

Specification Version and status Editor(s) Standardization
WS-Security Working Draft 17,

August 27, 2003
IBM, Microsoft, Verisign,
Sun, others

OASIS

WS-Security Addendum August 18, 2002 IBM, Microsoft, Verisign
WS-Security Tokens August 28, 2002 IBM, Microsoft, Verisign
WS-Federation July 8, 2003 IBM, Microsoft, Verisign,

RSA, BEA

WS-Trust 1.0, initial public draft,
December 18, 2002

Microsoft, IBM, Verisign,
RSA

WS-SecureConversation 1.0, initial public draft,
December 18, 2002

Microsoft, IBM, Verisign,
RSA

WS-SecurityPolicy 1.0, initial public draft,
December 18, 2002

Microsoft, IBM, Verisign,
RSA

WS-Policy 1.1, initial public draft,
May 28, 2003

Microsoft, IBM, BEA, SAP

WS-PolicyAssertions 1.1, initial public draft,
May 28, 2003

Microsoft, IBM, BEA

WS-PolicyAttachment 1.1, initial public draft,
May 28, 2003

Microsoft, IBM, BEA, SAP

Table 2-5: Overview of security related web service specifications

2.3.3 Messaging

There are several specifications that add extra features to SOAP messaging
like routing, addressing, meta data and attachments.

The Web Services Routing Protocol (WS-Routing) [wsrouting] adds extra
headers to the envelope of a SOAP message that can be used to specify the
next node in a message path. Several WS-Routing headers together can
specify the complete message and return path of a SOAP message. These
paths do not need to be known when the message is sent: SOAP routers
along the message path can add extra WS-Routing headers. The Web
Services Referral Protocol (WS-Referral) [wsreferral] is a protocol that can be
used to configure routing tables in SOAP routers.

Service Profiling in Business to Business Web Services

 10

Web Services Addressing (WS-Addressing) [wsaddressing] introduces SOAP
headers to address web service endpoints and to secure end-to-end endpoint
identification in messages in a transport-neutral way. WS-Addressing also
introduces a message ID and a message correlation ID. The Web Service
Callback Protocol (WS-Callback) [wscallback] defines SOAP headers to
specify a callback address for asynchronous responses to a SOAP request.
SOAP-Conversation elaborates on that principle and enables a
subscribe/notify scenario: the subscribe request contains a callback location
and a conversation ID. All notifications are sent to the callback location with
the conversation ID included in the SOAP header for correlating the message
with the original subscription.

Web Services Message Data (WS-MessageData) [wsmsgdata] allows the
addition of meta-data about the message. The current version (0.91) specifies
two specific types of meta-data: a message ID that relates to the current
message and a message ID that relates to another message.

SOAP Messages with Attachments (SOAP-Attachments or SwA) [soapattach]
describes the encapsulation of a SOAP message with attachments in a MIME
(Multipurpose Internet Mail Extensions) message. BEA, Microsoft and others
are working on a new version of SOAP-Attachments [soapattach2] because
the current version is under-specified with respect to the XML Infoset and with
respect to the processing model of SOAP. The new version also introduces a
method to include base64-encoded data within the SOAP envelope. This has
the advantage that standard XML processing techniques can still be used, as
is not the case with MIME or DIME encapsulation.

Web Service Attachments (WS-Attachments) [wsattach] describes the
encapsulation of a SOAP message and zero or more attachments into a
DIME (Direct Internet Message Encapsulation) [dime] message. DIME is
more efficient than MIME with respect to message processing because of
binary headers and a record size field in the header.

Specification Version and status Editor(s) Standardization
WS-Referral October 23, 2001 Microsoft
WS-Routing October 23, 2001 Microsoft
WS-Addressing March 13, 2003 Microsoft, IBM, BEA
WS-Callback 0.91, proposal, February 26, 2003 BEA
SOAP-Conversation 1.0, June 13, 2002 BEA
WS-MessageData 0.91, proposal, February 26, 2003 BEA
SOAP-Attachments 1.0, W3C Note, December 11,

2000
HP, Microsoft W3C

 0.61, April 1, 2003 BEA, Microsoft,
AT&T, SAP, Canon

WS-Attachments internet draft, June 17, 2002 Microsoft, IBM IETF
DIME Internet draft, June 17, 2002 Microsoft, IBM IETF

Table 2-6: Overview of messaging related web service specifications

2.3.4 Reliability

There are three initiatives for a reliable messaging standard for web services
[chappell]. All specifications or specification sets provide the same methods
for reliable transport: acknowledgements, retransmissions, message ordering
and duplication detection.

Service Profiling in Business to Business Web Services

 11

• Web Service Reliability (WS-Reliability) [wsreliability]. Shortly after the
announcement of this specification by Sonic, Sun, NEC, Fujitsu, Oracle,
SAP, webMethods and many others, OASIS formed a Technical
Committee (TC). The WS-Reliability specification does not cover all
issues and was purely intended to be a starting point for the TC.

• Web Services Reliable Messaging Protocol (WS-ReliableMessaging)
[wsreliablemsg] and WS-Addressing. These specifications by Microsoft,
IBM, BEA and Tibco are very similar to WS-Reliability.

• Web Services Acknowledgement Protocol (WS-Acknowledgement)
[wsack], WS-Callback and WS-MessageData. This set of specifications by
BEA defines SOAP-based reliable messaging.

Apart from the SOAP-based specifications, IBM proposed Reliable HTTP
(HTTPR) [httpr] as layer on top of the HTTP protocol for reliable message
transport over the Internet.

Specification Version and status Editor(s) Standardization
WS-Reliability 0.83, Working Draft,

November 18, 2003
Sonic, Sun, NEC, Fujitsu,
Oracle, Hitachi

OASIS

WS-ReliableMessaging March 13, 2003 Microsoft, IBM, BEA, Tibco
WS-Acknowledgement 0.91, proposal, February

26, 2003
BEA

HTTPR 1.1, December 3, 2001 IBM
Table 2-7: Overview of reliability related web service specifications

2.3.5 Transactions

Web Services Coordination (WS-Coordination) [wscoordination] describes a
framework for how individual web services can interact in order to accomplish
a task. The framework includes a context for the coordination and the
exchanged messages that are needed in order for transactions to complete
successfully as part of an overall business process defined in the Business
Process Execution Language (BPEL4WS).

Web Service Transaction (WS-Transaction) [wstransaction] defines two
coordination types that are used in the coordination framework described in
WS-Coordination: an Atomic Transaction (AT) is used for the coordination of
a set of activities of short duration following the 'all-or-nothing' principle. This
means that all activities, or no activities at all are carried out. If an activity
fails, tasks that have already been completed can automatically be undone. A
Business Activity (BA) usually takes more time than an AT, making it
impossible to do a rollback in case of a failure. In a BA, business logic is used
to handle exceptions. The combination of AT and BA protocols support a
variety of business processes, including those found in the Business Process
Execution Language (BPEL4WS) specification.

In September 2003, Microsoft, IBM and BEA published a revised version of
the complete Web Services Transaction Framework [wstransaction2]. The
new WS-Coordination specification from September 2003 replaces the
August 2002 version. The Web Services Atomic Transaction (WS-
AtomicTransaction) and the (soon to be published) Web Services Business
Activity (WS-BusinessActivity) replace the WS-Transaction specification.

Service Profiling in Business to Business Web Services

 12

An alternative to the WS-Coordination and WS-Transaction couple there is
the Business Transaction Protocol (BTP) [btp], which is a more general and
less complicated protocol. Moreover, OASIS already standardized BTP.
Overviews and comparisons can be found in [coverpages] and [furniss].

The OASIS Web Services Composite Application Framework Technical
Committee (WS-CAF TC) was formed in September 2003 to further develop
and standardize the Web Services Composite Application Framework (WS-
CAF).

WS-CAF (backed by Sun, Oracle, and others) is the counterpart of Microsoft
and IBM's WS-Coordination and WS-Transaction specifications. The
framework is aimed at solving the problem of coordinating multiple web
services and consists of three specifications. WS-CAF is supposed to be
compatible with existing specifications like BPEL, WS-Transaction and BTP
[taft]. The authors of WS-Coordination and WS-Transaction have been
contacted to contribute their specifications to the TC.

The Web Service Context (WS-CTX) defines a framework for context
management that enabled web services to share a common context to share
information about a common end result. The Web Service Coordination
Framework (WS-CF) notifies web services involved in a transaction of a
certain outcome. Web Service Transaction Management (WS-TXM) enables
web services to negotiate about a common outcome of a transaction.

Specification Version and status Editor(s) Standardization
WS-Coordination August 2002 Microsoft, IBM, BEA
 September 2003 Microsoft, IBM, BEA
WS-Transaction August 2002 Microsoft, IBM, BEA
WS-AtomicTransaction September 2003 Microsoft, IBM, BEA
WS-BusinessActivity To be published
BTP 1.0, OASIS Committee

Specification, June 3, 2002
Choreology, Sun, BEA,
Oracle, others

OASIS

WS-CTX 1.0 draft, July 28, 2003 Sun, Oracle, Iona,
Arjuna, Fujitsu

OASIS

WS-CF 1.0 draft, July 28, 2003 Sun, Oracle, Iona,
Arjuna, Fujitsu

OASIS

WS-TXM 1.0 draft, July 28, 2003 Sun, Oracle, Iona,
Arjuna, Fujitsu

OASIS

Table 2-8: Overview of transaction related web service specifications

2.3.6 User interface

The Web Services User Interface (WSUI) [wsui] specification uses a simple
XML schema to provide web services with a user interface using XSLT style
sheets to create for example HTML or WML views.

Service Profiling in Business to Business Web Services

 13

The Web Services eXperience Language (WSXL) [wsxl] defines a framework
for enabling businesses to offer one web service through multiple channels.
Each service offering can be customized using WSXL components. WSXL
describes three types of basic components: data components, presentation
components and control components. Each of the components can be
configured to customize the output by means of an Adaptation Description in
the Adaptation Description Language (ADL). One web service and one or
more components can be choreographed together using code, or for example
the choreography mechanisms of BPEL4WS, since each component has a
web service interface.

Both the WSUI and WSXL specifications form the input of the Web Services
for Interactive Applications (WSIA) OASIS Technical Committee [wsia]. The
WSIA and Web Services for Remote Portlets (WSRP) [wsrp] OASIS groups
are working closely together since WSIA and WSRP are both standards for
visual, user-facing web services components. WSIA intends to define a
general interface to display web service components in any type of web
application, while WSRP intends to define the specific interface for the case
when that web application is a portal. Both groups intend to define a common
interface so WSIA components can be used in portals and WSRP
components can be used in WSIA applications [freedman].

Specification Version and status Editor(s) Standardization
WSUI 1.0, working draft, July 26, 2002 Epicentric (now Vignette)
WSXL 2, IBM Note, April 10, 2002 IBM
WSIA IBM OASIS
WSRP 1.0, OASIS Standard,

September 3, 2003
IBM, Vignette, Novell, Netegrity
Oracle, Crossweave, WebCollage

OASIS

Table 2-9: Overview of user interface related web service specifications

2.3.7 Other

The Web Service Inspection Language (WSIL or WS-Inspection) offers a way
to inspect what services are available on a specific site or server. WS-
Inspection offers a much more simple way of publishing web services than in
a central UDDI registry, but also has less functionality.

The OASIS Web Services Distributed Management (WSDM) Technical
Committee will work on developing a standard for the management of web
services, for example in a B2B situation where trusted business partners will
want the ability to manage each other's web services. Computer Associates,
IBM, and Talking Blocks have submitted their Web Services Manageability
1.0 (WS-Manageability) specification that consists of three documents
[wsmanage]: Web Services Manageability Concepts, Specification and
Representation. The specification introduces general concepts of a
manageability model, manageability implementation patterns and discovery
considerations.

Specification Version and status Editor(s) Standardization
WS-Inspection 1.0 Microsoft, IBM
WSDM Novell, IBM OASIS
WS-Manageability 1.0, September 10, 2003 Talking Blocks, Computer

Associates, IBM
OASIS

Table 2-10: Overview of other web service specifications

Service Profiling in Business to Business Web Services

 14

2.4 Development and standardization

A lot of companies are involved in the development of web services, but four
names are represented in almost every aspect of web services: IBM,
Microsoft, BEA Systems and Sun Microsystems. Other companies like
Verisign, RSA, Oracle, SAP, HP and many others are also involved, but only
in one or just a few web service areas. Since so many companies are
involved, standardization and interoperability are very important issues.

Three non-profit organizations have formed technical committees or working
groups to coordinate the development and standardization of web services:
the World Wide Web Consortium (W3C), the Internet Engineering Task Force
(IETF) and OASIS. The Web Services Interoperability Organization (WS-I)
addresses interoperability issues between web services.

2.4.1 W3C

The web services activities of the W3C are structured into four Working
Groups, apart from a Coordination Group: the Web Services Architecture
Working Group defines the overall architecture, the XML Protocol Working
Group defines the SOAP and SOAP with attachments protocols, the Web
Services Description Working Group defines the WSDL specification and the
Web Services Choreography Working Group works on the WSCI
specification.

2.4.2 IETF

The two web services related standards submitted to IETF by IBM and
Microsoft (DIME and WS-Attachments) were individual submissions and not
part of any working group or activity at the IETF.

2.4.3 OASIS

OASIS is a non-profit global consortium that drives the development,
convergence and adoption of e-business standards and has over 600
corporate and individual members from all over the world. The development
and standardization work within OASIS is structured into Technical
Committees (TCs) which each deal with their (part of a) specific standard.

2.4.4 WS-I

With so many companies and bodies involved in the development and
standardization of web services, and the large number and versions of web
services standards, it will be difficult to guarantee interoperability across
platforms, applications and programming languages. That is why over 170
companies formed the Web Services Interoperability Organization (WS-I),
lead by Microsoft and IBM. The deliverables of the WS-I are:

• A set of profiles containing a list of web service specifications including
version numbers together with guidelines how the specifications should be
used.

• Testing tools that can be used to monitor and analyze the interactions with
a web service to create an interoperability report.

Service Profiling in Business to Business Web Services

 15

• Use cases and usage scenarios capturing the business and technical
requirements of the use of web services.

• Sample applications that are implementations of the use cases and usage
scenarios and conform to a given set of profiles. These sample
applications are implemented on multiple platforms using different
languages.

Other interoperability testing organizations mainly focus on one particular
specification while WS-I tests conformance on a higher level for a profile or a
set of specifications. For example, the SOAP interoperability tests of the
Soapbuilders organization are focused on platform tool interoperability to
ensure that tools created by platform vendors create interoperable web
services. The WS-I is more focused on the guidance of the users of those
tools (the web service implementers) to create interoperable and conformant
web services.

In August 2003 WS-I approved Basic Profile 1.0 that covers the SOAP 1.1,
WSDL 1.1, UDDI 2.0, XML 1.0 and XML Schema specifications [basicprofile].

2.5 Related standards

XML web services are not the only way to exchange information and conduct
electronic business over the Internet using XML messages. XML-RPC and
ebXML are two other important standards. In the area of security, SAML,
XACML and the Liberty Alliance Project are important initiatives.

2.5.1 XML-RPC

XML-RPC [xmlrpc] is a very simple specification for Remote Procedure Calls
(RPC), defined by Userland in 1998. It defines request, response and fault
XML messages that are exchanged using HTTP POST. Because the
standard has been around since 1998 there are quite a few implementations
available in several programming languages. The specification does not
include any discovery or description methods, nor does it discuss security
issues.

2.5.2 ebXML

The mission of the Electronic Business using eXtensible Markup Language
(ebXML) [ebxml] working group established by UN/CEFACT and OASIS is:

ebXML enables enterprises of any size, in any location to meet and conduct
business through the exchange of XML-based messages.
http://www.ebxml.org
ebXML Working Group

The ebXML architecture contains an ebXML Registry where businesses can
register their Collaboration Protocol Profile (CPP). A CPP describes a
company's ebXML capabilities, constraints, implementation details and
supported business scenarios. If some company discovers business
scenarios of another company they would like to engage in, both companies
form a Collaboration Protocol Agreement (CPA) containing the mutually
agreed upon business scenarios and specific agreements. If the CPA is
accepted the companies are ready to engage in electronic business
transactions using ebXML.

Service Profiling in Business to Business Web Services

 16

ebXML focuses on the business processes between two enterprises where
web services have a more general context. Not only technical but also
business process aspects of electronic business transactions are described
by the documentation and specifications.

The basic functions of ebXML have an overlap with XML web service
functions but generally have something extra. An ebXML web service is
described in CPP, whereas an XML web service is described in WSDL. A
CPP contains the same information as a WSDL, but also some other
parameters like the role of an organization in the context of a particular
service, error handling and failure scenarios. A service can be published and
discovered using an ebXML registry or a UDDI registry. An ebXML registry
provides more information with respect to business profiles, processes and
documents. The messages in an ebXML transaction are transported using the
secure and reliable ebXML Messaging Service. Although this service uses
SOAP over HTTP, it adds features like CPA management [irani].

2.5.3 SAML

The Security Assertions Markup Language (SAML) [saml] is an XML
framework for exchanging authentication and authorization information and is
being developed by the OASIS Security Services Technical Committee.

The information items expressed in SAML are assertions about a subject
(person, computer) that has an identity in some security domain. These
assertions can contain information about authentication, authorization and
attributes of a subject. SAML authorities issue assertions: authentication
authorities, policy decision points and attribute authorities.

SAML defines a protocol for the communication between SAML authorities
and clients. Clients can request an assertion from a SAML authority. This
authority can use various sources of information (like Radius, LDAP, or other
SAML assertions) to form the response to the client. SAML can be used over
many different transport methods but currently only the binding to SOAP over
HTTP is defined.

Specification Version and status Editor(s) Standardization
SAML 1.0, OASIS Open Standard, November

5, 2002
VeriSign, Sun, others OASIS

 1.1, Oasis Standard, September 2, 2003 Sun, Netegrity, RSA
Security, others

OASIS

Table 2-11: Overview of SAML specifications

2.5.4 XACML

The eXtensible Access Control Markup Language (XACML) [xacml] is
designed to express access control policies for information access over the
Internet. The authorization decision model is shared by SAML and XACML,
based on the ISO IETF model. The model includes several entities
[anderson]:

• Attribute Authorities that provide information about subjects, resources,
etc.

Service Profiling in Business to Business Web Services

 17

• Authentication Authorities that state which individuals have authenticated
and how they are authenticated

• Policy Administration Points (PAP) that create policies

• Policy Enforcement Points (PEP) that generate Authorization Decision
Requests, send these requests to a PDP and enforce the decision of the
PDP

• Policy Decision Points (PDP) that evaluate the policies in the context of a
specific Authorization Decision Request and return an Authorization
Decision.

XACML defines the language to express Authorization Decision Requests,
Authorization Decisions and the policies created by the PAP. XACML and
SAML are closely related: SAML assertions can be used in a XACML
Authorization Decision Request to describe how a subject was authenticated
and what attributes he has. The XACML OASIS TC recently has submitted a
proposal to the SAML OASIS TC to include native XACML Request and
Response contexts in SAML 2.0.

Specification Version and status Editor(s) Standardization
XACML 1.0, OASIS Open Standard, February

18, 2003
Overxeer, Entrust, Sun,
IBM, BEA, others

OASIS

Table 2-12: Overview of XACML specifications

2.5.5 Liberty Alliance Project

The Liberty Alliance Project [liberty] originally was an initiative of Sun
Microsystems but has grown to an alliance of over 160 companies from all
over the world, including educational, governmental and financial institutions,
service providers, technology firms and wireless providers.

The objective of the project is to define an open standard for federated
network identity and identity-based services that enable simplified sign-on to
multiple domains or websites and support and promote permission-based
attribute sharing to enable a user's choice and control over the use and
disclosure of his/her personal identification. To accomplish this the alliance is
divided into three collaborating expert groups:

• The Business & Marketing Expert Group takes care of public relations,
market requirements and business templates for business adoption of the
specifications.

• The Technology Expert Group creates the specifications en drives sample
implementations and interoperability testing.

• The Public Policy Expert Group ensures that the Liberty specifications
comply with laws and regulations and develops privacy best practice
guidelines.

Service Profiling in Business to Business Web Services

 18

The specifications are released in several phases. Phase 1 (also called the
Identity Federation Framework, ID-FF) is a set of specifications that provide
an architecture for federated network identity (account sharing) and single
sign on. Phase 2 (Identity Web Services Framework, ID-WSF) allows groups
of trusted parties to link with other groups and will provide end users with the
ability to control how their identity information is shared (permissions-based
attribute sharing). Phase 3 (Identity Services Interface Specifications (ID-SIS)
will build services on top of the phase 2 ID-WSF [fontana].

Liberty Alliance collaborates with existing standards groups like the OASIS
Security Services TC responsible for the SAML specifications. In Liberty
version 1.1 (phase 1) they extended SAML 1.0 to include additional security
features for identity management. With the publication of the Liberty phase 2
draft specifications the phase 1 documents were submitted to OASIS to serve
as input for SAML 2.0.

Another well-known identity management system is Microsoft's .NET
Passport. Although Liberty in the beginning was set up by Sun to provide an
alternative to Passport, efforts are now made to make sure Liberty and
Passport can coexist and work together [roberts].

2.6 Web services in telecom

There are several organizations working on web services for telecom related
applications.

2.6.1 Parlay Group

The Parlay Group [parlay] is a group of IT companies, software developers,
network device vendors and operators, application service providers, etc. The
goal of the Parlay Group is to define a set of open, technology independent
application programming interfaces (APIs) for multi-vendor interoperability
and rapid development of applications.

The Parlay Web Services Working Group is working on interface and
infrastructure definitions for using web services within a telecom environment.
The Parlay X Working Group defines highly abstracted web service interfaces
for Parlay OSA (Open Service Access) services, thus exposing telecom
capabilities through web services that are very simple to use by the IT
community. These services include call control, SMS and multimedia
message sending, payment, account management, user status and user
location.

The Parlay Group has formed a Joint Working Group (JWG) together with the
European Telecommunication Standard Initiative (ETSI) and the Third
Generation Partnership Project (3GPP) to develop and maintain one uniform
set of Parlay OSA APIs.

Service Profiling in Business to Business Web Services

 19

2.6.2 Open Mobile Alliance

The Open Mobile Alliance (OMA) [oma] is a global organization, set up by the
mobile industry in June 2002 based on the WAP Forum and the Open Mobile
Architecture initiative. Since then, a number of other organizations have
integrated into OMA: the Location Interoperability Forum (LIF), SyncML
(Synchronization Markup Language), MMS-IOP (Multimedia Messaging
Interoperability Process), Wireless Village, Mobile Gaming Interoperability
Forum (MGIF) and the Mobile Wireless Internet Forum (MWIF). The principles
of OMA are [omaoverview]:

• Products and services are based on open, global standards, protocols
and interfaces and are not locked to proprietary technologies.

• The applications layer is bearer agnostic (examples: GSM, GPRS, EDGE,
CDMA, UMTS)

• The architecture framework and service enablers are independent of
Operating Systems (OS)

• Applications and platforms are interoperable, providing seamless
geographic and intergenerational roaming.

The OMA releases specifications in three phases to ensure standardization
and interoperability between services, applications and devices [omarelease]:

• Phase 1: an approved set of open technical specifications forming an
enabler that can be implemented in products and solutions and which can
be tested for interoperability

• Phase 2: in addition to the open technical specification in phase 2, the
enabler has successfully passed interoperability tests

• Phase 3: finally the OMA Interoperability Release is released when the
enabler has passed end-to-end interoperability tests

The OMA Mobile Web Services Group develops a specification to enable the
offering of services within the OMA framework to third parties using a web
service interface. These services can be for example messaging (SMS,
MMS), location services or accounting.

OMA is working on a number of open specifications for mobile services and
works closely together with existing standards organizations and groups such
as IETF, 3GPP, 3GPP2, W3C and JCP. OMA is trying to align its work with
other initiatives like Parlay and Liberty.

2.6.3 3GPP

The Third Generation Partnership Project (3GPP) [3gpp] is a collaboration
between a number of telecommunications standards bodies: ARIB, CWTS,
ETSI, T1, TTA and TTC. The original scope of 3GPP was to produce a
worldwide uniform standard for third generation mobile networks. This scope
was later broadened to include the evolution of the second-generation GSM
networks: GPRS and EDGE.

Service Profiling in Business to Business Web Services

 20

The 3GPP Multimedia Messaging Service [mms] architecture contains an
interface for sending and receiving MMS's using SOAP (with attachments)
over HTTP. This interface is called the MM7 reference point. Although this
interface uses SOAP, there is no WSDL description defined, so one could
argue if this is a real web service.

2.6.4 Ecma International

Ecma International is a not-for-profit industry association of technology
developers, vendors and users that develops standards for information and
communication technology (ICT) and consumer electronics.

The Ecma-348 standard (Web Services Description Language (WSDL) for
CSTA Phase III, [ecma]) describes a WSDL for the XML messages defined in
Ecma-323, XML Protocol for Computer Supported Telecommunications
Applications (CSTA) Phase III.

With this CSTA WSDL developers can easily build applications that manage
voice, instant messaging, SMS, paging and e-mail, in the same way, no
matter what type of infrastructure they have.

2.7 Discussion

In the area of web services, very little is already standardized. The basic
standards UDDI, WSDL and SOAP are well defined, while most of the
additional specifications are still in the public draft stage, or even not even
that far.

With so many companies working on web services, interoperability and
overlap are some of the problems that arise. The problem of interoperability is
handled by the WS-I. Overlap can be seen in a number of areas: business
processes (BPEL4WS vs. WSCI), binary attachments in SOAP (SOAP-
Attachments vs. DIME), reliable messaging (WS-Reliability vs. WS-
ReliableMessaging vs. WS-Acknowledgement/WS-Callback/WS-
MessageData vs. HTTPR) and transactions (WS-Transaction vs. BTP vs.
WS-CAF).

Also, until specifications have been submitted to OASIS or another
standardization body, intellectual property rights (IPR) and license claims can
form a barrier for implementations and can be a threat to the worldwide
adoption of some of the web services specifications.

So the basics are there, but the rest still needs a whole lot of work.

Service Profiling in Business to Business Web Services

 21

3 Service profiling

This chapter elaborates on the service profiling concept and provides an
example for better understanding. Also a general service profiling architecture
is introduced.

3.1 Introduction

When one business offers a service to another business, that service usually
consists of an interface and a process. The interface describes how to
communicate, and the process describes what is actually being done when
the service is used. That process contains both business and technical
aspects, like how the service is paid for and what should be done in case of a
failure. Such a process is called a service profiling process. An offered service
will therefore usually be composed of a choreography of several other
services, together fulfilling the business and technical needs.

A service profiling process links several base and auxiliary services together.
A base service is a service that implements the actual functionality of the
offered service, while auxiliary services usually provide the business and
technical requirements like charging, logging, privacy checks, etc.

Once a service provider has set up a library of base and auxiliary services,
offering new services is only a matter of designing a new service profiling
process and deploying the process on a service profiling platform.

Because the service profiling process is executed the moment the service is
used, it is possible to adapt the service to some context the moment it is
used, for example time of day, user status, user location, etc. These services
are said to be context aware.

This assignment is limited to web services, but there are a lot of advantages
when using web services. It is a standardized format and web service
invocations can easily be routed over the Internet. That way it is very easy to
offer a service that contains base or auxiliary services that the service
provider itself does not offer. In this way a telecom operator can offer a
service where a user can request a map with points of interest depending on
his or her location, without the operator needing to buy a complete points of
interest database or a database with maps. Already a large number of web
services are available on the Internet.

3.2 Example

We will now introduce the example service profiling process SendSMS that
will be used later on to build a prototype.

Consider a company that wants to send advertisement SMS messages to
consumers. If consumers do not want the SMS messages, they can sign an
opt-out form with their operator. If a message is sent, the operator has to
check if the receiver of the SMS message has signed an opt-out form.
Moreover, if the SMS could not be sent for some reason, the company does
not have to pay for that SMS. The flowchart for such a service would look
something like figure 3-1.

Service Profiling in Business to Business Web Services

 22

Invoke SendSMS
service

Recipient
signed opt-out?

Log request

Send the SMS Charge senderSend
succesfull?No Yes

Fault OK
Yes No

Figure 3-1: Flowchart of an example SendSMS service

The flowchart actually describes the service profiling process. In this example
the base service is easily identified: "Send the SMS". Whether or not the
sending of the SMS was successful can be handled by an exception handling
mechanism, so that leaves us with the following auxiliary services: "Log
request", "Receiver signed opt-out?" and "Charge sender". As you can see in
the flowchart, the logging service can be invoked in parallel with the opt-out
check to speed up the response time.

3.3 Architecture

The general service profiling architecture in figure 3-2 shows how the different
entities in the service profiling process (base service, auxiliary services,
service profiling process, web service consumer) are linked together.

The architecture shows two domains: the Internet and the provider domain. In
between is a security gateway that handles authentication and authorization,
so the provider domain can be seen as a secure environment in which the
service profiling process executes. The Web Service Consumer (WSC) is the
person or company that is using (consuming) the service. Since the base or
auxiliary service do not need to be in the provider domain, one auxiliary
service is placed in the Internet domain in this picture. The service profiling
process is the central entity that links everything together.

Service Profiling in Business to Business Web Services

 23

Service profiling
process

Auxiliary service
Auxiliary service

Auxiliary service

Base service
Auxiliary service

Auxiliary service

Web Service Consumer

Internet

Provider domain
 Security gateway

Figure 3-2: General service profiling architecture

All arrows represent web service invocations (usually SOAP over HTTP) while
the rounded rectangles represent web services. The interface between the
service profiling process and all other services and the WSC are web service
interfaces, so the only thing the WSC sees is a web service interface and is
not aware of the whole service profiling process.

Service Profiling in Business to Business Web Services

 24

Service Profiling in Business to Business Web Services

 25

4 BPEL

This chapter contains an introduction to BPEL and a discussion about the
suitability for service profiling.

4.1 Introduction

The Business Process Execution Language for Web Services (BPEL4WS, or
BPEL in short) is an XML-based "notation for specifying business process
behavior based on Web Services" [bpel11]. A BPEL document describes a
business process in the form of a series of web service invocations
(choreography) that are executed in a specific order because of possible data
or control dependencies (orchestration). BPEL provides support for error
handling, data handling and message correlation. Because all invoked
services are web services, other web service specifications or standards can
provide additional features (like WS-Security for enhanced security).

BPEL originally started as an initiative from IBM, Microsoft and BEA. In
August 2002, the first public draft specification of the “Business Process
Execution Language for Web Services (BPEL4WS)" was released. The
specification was based on the Web Services Flow Language (WSFL) from
IBM and XLANG from Microsoft.

WSFL is "an XML language for the description of Web Services compositions"
[wsfl] published by IBM in May 2001 to serve as an input to standardization
initiatives in the corresponding area. The specification describes two types of
compositions: usage patterns to describe business processes and interaction
patterns as an overview of all partner interactions. XLANG is "a notation for
the specification of message exchange behavior among participating web
services" [xlang] published by Microsoft in May 2001.

On April 16, 2003, OASIS announces the forming of the new Web Service
Business Process Execution Language TC to continue work on the business
process language published in the BPEL4WS 1.0 specification. Just two
weeks before, IBM, Microsoft, BEA, SAP and Siebel published a new version
of the BPEL specification (version 1.1, dated March 31, 2003), incorporating
numerous corrections and clarifications based on the feedback received on
the 1.0 version. This BPEL specification was intended to be submitted by the
authors at the first meeting of the TC. Instead of that version, an updated
BPEL 1.1 specification dated May 5, 2003 was submitted as a starting point
for the TC.

Several implementations exist today. IBM offers an open source BPEL engine
running on a J2EE application server called BPWS4J [bpws4j]. The Collaxa
BPEL Server is a commercial product based on the JBoss application server
and the Axis SOAP implementation [collaxa]. The next version of Microsoft
BizTalk application integration server will also include BPEL support and is
based on the Microsoft .NET platform.

Service Profiling in Business to Business Web Services

 26

4.2 How it works

The BPEL specification depends on a number of other XML and web service
related standards:

• WSDL 1.1 for describing the choreographed and exposed web services
and for mapping abstract port types to real service endpoint addresses.

• XML Schema 1.0 for data types etc.

• XPath 1.0 as XML query language. It is possible to use other XML query
languages, but support for XPath 1.0 is mandatory for BPEL compliance.

4.2.1 Partners and partner links

A BPEL process definition begins with a list of partner links and variables.
Then the actual process follows as a series of web service invocations and
operations on variables.

Conversations between the BPEL process and a web service of a partner are
always done through a partner link. The web service consumer is also seen
as a partner. A partner link is of a partner link type, which describes the
conversational relationship between two services by defining "roles" played by
each of the services in the conversation and specifying the WSDL port type
for each service to receive messages.

The process can have more than one role. Each role specifies exactly one
WSDL port type. It is possible to have multiple roles on one partner link.
Multiple partner links to one partner is also possible.

In a process, web services are referenced in an abstract way by a partner
link, WSDL port type and WSDL operation. Each invocation has a name and
specifies an input and/or output variable.

4.2.2 Variables

There are two types of variables in a BPEL process: message properties and
variables.

A message property can hold information about both the context of a
message (headers) or the data in the message (body) and can both be part of
business protocols (for example, correlation tokens) or infrastructure protocols
(for security, transaction, reliable messaging, etc.). Message properties are
defined using XML Schema simple type definitions. Message properties are
linked to a part of a message using a property alias, specified as an XPath
query.

Variables are used in a process to keep track of some state in the process or
to contain messages that are to be sent to or are received from partners. The
type of a variable may be a WSDL message, an XML Schema simple type or
an XML Schema element.

Service Profiling in Business to Business Web Services

 27

4.2.3 Correlation

Sometimes multiple web service invocations need to be correlated so that the
right instance of the service is invoked, or asynchronous messages are routed
to the right instance of the business process. Usually, correlation tokens (like
a customer ID, order ID or transaction ID) are inserted into a message. Since
there may be different correlation tokens in one process, a message may
contain more than one correlation token. Correlation sets specify correlated
groups of operations within a service instance. A set of correlation tokens is
defined as a set of properties shared by all messages in the correlated group.
The tokens are automatically inserted into the header or body of the SOAP
message, if not already present.

4.2.4 Web service activities

There are three basic activities for web service operations: invoke, receive
and reply. An invoke activity performs a WSDL operation on a WSDL port
type over a partner link using an input and possibly an output message. The
receive activity waits for an operation to be received at a port type over a
partner link. After the receive activity took place a reply may be sent using the
same operation, port type and partner link.

The assign activity can be used to copy (a part of the) data from one variable
to another or insert new data using expressions.

Other activities are the throw, wait and empty activities. If an activity fails for
some reason, a fault can be caught and handled. The throw activity can be
used to explicitly signal a fault. The wait activity is for waiting until a certain
point in time or for a certain period, and an empty activity can be used to
suppress errors for example.

In an activity, a compensation handler can be specified. A compensation
handler is an activity that compensates for another activity. These handlers
are mainly used in fault handling for cleaning up and a roll back of
transactions.

4.2.5 Structured activities

Structured activities prescribe the order in which a collection of activities takes
place. There are five different activities: sequence, switch, while, pick and
flow.

Sequential control is provided by sequence, switch and while. A sequence
activity contains a list of activities that are performed sequentially. If the last
activity of the sequence has completed, the sequence is also complete. A
switch activity consists of a list of conditional branches, and an optional
'otherwise' branch. Only the first branch whose condition is true is executed,
or if no branch has a true condition the 'otherwise' branch is executed. All
activities contained in a while activity are repeatedly executed until the while
condition is false.

The pick activity is a set of events (either the reception of a message or an
'alarm' based on a timer) where only the event that occurs first is executed. If
that one event is completed, the whole pick activity is complete.

Service Profiling in Business to Business Web Services

 28

Concurrency and synchronization between activities is provided by the flow
activity. All activities in a flow activity are executed at the same time
(concurrent). A flow completes when all activities in that flow have completed
(either successful or not). Synchronization between concurrent activities is
done by links. A link has a source activity and a target activity where the
target activity can only be executed when the source activity is complete.

The source of a link can also specify a transition condition that has to
evaluate to true before the target activity can start. Likewise, the target of a
link can specify a join condition that has to evaluate to true and may contain
an expression with variables and has to take the link status into account.

An activity that has one or more synchronization dependencies (i.e. is the
target in one or more links) only starts if the transition conditions and join
conditions of all incoming links evaluate to 'true'

4.2.6 Fault handling

The behavior context for an activity is provided by a scope. A scope can
provide fault handlers, event handlers, a compensation handler, data
variables and correlation sets.

A compensation handler is an activity that compensates for the activity within
the scope if for example a fault is caught and the result of the activity needs to
be undone. A compensation handler can be invoked explicitly by using the
compensate activity (for example in a fault handler), or implicitly if the
compensation handler of an enclosing scope is executed.

Fault handlers are executed when an exception is thrown, by a throw activity
or by a failure in an invoke activity for example. A fault handler contains catch
handlers that can catch a specific fault, or all faults if no fault is specified. The
catchAll handler catches any fault that is not caught by a more specific catch
handler. A catch handler may invoke a compensation handler, invoke some
web service, rethrow the fault to a higher-level scope, terminate the process,
or just do nothing.

4.2.7 Event handlers

Two types of event handlers can be associated with a scope: onMessage
handlers that fire on the reception of a specific message or onAlarm handlers
that fire after a certain time after the scope is activated or at a certain point in
time. The event handlers are active as long as the scope they belong to is
active. Multiple messages can be handled by the event handlers concurrently
and multiple times. An alarm handler can only be activated once and is
disabled afterwards. An event cannot instantiate a process instance, but can
instantiate a correlation set.

Service Profiling in Business to Business Web Services

 29

4.3 IPR and licensing

When the original developers of the BPEL specification (IBM, Microsoft, BEA
Systems, SAP AG and Siebel Systems) submitted BPEL to Oasis, they made
the following statement concerning intellectual property rights when
implementing the BPEL specification:

Each Author commits to grant a non sub-licenseable, non-transferable license
to third parties, under royalty-free and other reasonable and non-
discriminatory terms and conditions, to certain of their respective patent
claims that such Author deems necessary to implement required portions of
the BPEL Specification, provided a reciprocal license is granted.
http://www.oasis-open.org/committees/wsbpel/ipr.php

BEA, IBM and Microsoft have submitted additional statements to OASIS. BEA
states to have no patent rights in BPEL, but will provide the above mentioned
license if necessary. IBM believes that they hold several published and
unpublished patents that may be essential to compliant implementations of
the BPEL specification, and will provide the above-mentioned license.

Microsoft defines additional terms for providing a royalty-free license: object
code versions of a BPEL implementation may only be distributed
"…incorporated into Company Products and solely for the purpose of
complying with BPEL4WS." [bpellicense], while the source code may only be
distributed if the following notice will be prominently displayed in all copies
and in the license agreement of that source code:

"This source code may incorporate intellectual property owned by Microsoft
Corporation. Our provision of this source code does not include any licenses
or any other rights to you under any Microsoft intellectual property. If you
would like a license from Microsoft (e.g. rebrand, redistribute), you need to
contact Microsoft directly." [bpellicense].

4.4 Implementations

I found two BPEL implementations on the J2EE platform that are available for
download on the Internet: the Collaxa BPEL Server and IBM implementation
BPWS4J. There are also already several graphical editors available to design
BPEL processes: plug-ins for Eclipse (IBM, BP Wizard Software) and LTSA,
VisualScript XML and Collaxa BPEL Designer.

4.5 Architecture

The architecture for the service profiling process would not be very different
from the general architecture in chapter 3. The BPEL engine can just replace
the general 'service profiling process'. All arrows represent web service
invocations.

Service Profiling in Business to Business Web Services

 30

BPEL process

Auxiliary service
Auxiliary service

Auxiliary service

Base service
Auxiliary service

Auxiliary service

Web Service Consumer

Internet

Provider domain
 Security gateway

Figure 4-1: Service profiling architecture using BPEL

4.6 Discussion

The structured activities in BPEL are very well suited for (online)
choreography and orchestration. Transactions within the process are
supported through the use of fault and compensation handlers. The service
consumer is totally unaware of the process, since the process itself has a web
service interface described in standard WSDL.

The BPEL implementations in the Collaxa BPEL Server and IBM BPWS4J
offer tools for easy process deployment and undeployment. Graphical editors
greatly ease the creation of BPEL processes.

Performance could be an issue, since all auxiliary services must have a web
service interface, thus introducing extra XML and SOAP encoding overhead.
Moreover, BPEL was designed with relatively long lasting transactions in
mind, and is thus not optimized for performance.

BPEL is backed by a great majority of industry leaders, like Microsoft, IBM,
Sun Microsystems, BEA, HP, Oracle, SAP, and many others. Although
Microsoft has posed additional licensing terms, this should not be a problem,
especially when using an existing BPEL implementation.

Service Profiling in Business to Business Web Services

 31

5 WSCI

This chapter contains an introduction to WSCI and a discussion about the
suitability for service profiling.

5.1 Introduction

The Web Service Choreography Interface (WSCI) is an "XML-based interface
description language that describes the flow of messages exchanged by a
Web Service participating in choreographed interactions with other services"
[wsci]. WSCI is an extension to WSDL. While WSDL describes the static
interface of a web service to perform one operation on that service, WSCI can
be used to describe the dynamic interface of a web service by describing the
relationship between multiple operations in the context of multiple message
exchanges.

BEA Systems, Intalio, SAP and Sun Microsystems released the WSCI
specification in June 2002. In August 2002 the specification was submitted to
W3C as a royalty-free specification, where it got the "W3C Note" status. This
specification served as the one of the principal input documents for the W3C
Web Services Choreography Working Group.

5.2 How it works

WSCI describes an interface that contains one or more processes. A web
service may expose multiple interfaces for supporting multiple scenarios or
multiple views on the same scenario (for example for different actors).

5.2.1 Variables

Properties are the variables of WSCI. Properties are name-value pairs that
can contain entire messages, a reference to part of a message, or just some
value. All incoming and outgoing messages are automatically defined as
properties. Properties have a global scope, unless they are defined as local
properties to some scope.

The (top-level) selector element defines how property values are extracted
from incoming messages using an XPath query. If no XPath query is specified
and no value is specified, the whole message is assigned to the property.

5.2.2 Context and correlation

A context is the environment in which an activity is executed. Several
activities can share one context. A context contains a set of local properties
and processes that are available to the activity, and information about
exception handling and transactions.

For defining correlations, the correlation element is used. Each correlation
consists of a unique name, a list of properties used to correlate messages,
and optionally an extends attribute if the correlation is the extension of some
base correlation. The correlate element is used to associate an action with the
correlation definition, using the unique name. This element is also used to
specify when a correlation has to be instantiated.

Service Profiling in Business to Business Web Services

 32

5.2.3 Exceptions and transactions

The kinds of exceptions that can be caught are the receipt of a particular
message that is considered an exception in that context, the receipt of a
WSDL fault message, a fault generated by the service itself or a timeout. If an
exception is caught, the exception handler is executed and only the current
context terminates, not the entire process. Uncaught exceptions are raised in
the parent context.

If a context is associated with a transaction, the activities within that context
are executed in an all-or-nothing manner. Compensation activities can be
declared to roll back an activity if the transaction has completed successfully,
but needs to be undone. If a transaction contains other (sub) transactions,
those sub transactions are rolled back first (recursively) in reverse order of
completion. WSCI supports two types of transactions: atomic transactions that
are of short duration and require resource locking, and open transactions
where the transaction progresses from one consistent state to another.

5.2.4 Processes

A process is a (portion of) behavior that can be reused in another process by
instantiating it via the receipt of a message, explicit calling, or from within the
service implementation (not shown in the interface). There are two types of
processes: top-level processes that are defined at the interface level and can
be referenced from everywhere within the interface, and nested processes
that are defined within a complex activity and can only be referenced from
within that activity.

The behavior of a process is described as a set of choreographed activities.
This may either be atomic (WSDL) activities, or complex activities recursively
composed of multiple activities. For describing choreography of activities
WSCI supports sequential and parallel execution, looping and conditional
execution.

Processes can be reused by using a call or a spawn activity. A call activity
instantiates a process and waits for it to complete, a spawn activity
instantiates a process and completes immediately. The join activity waits for
all instances of a spawned process to complete.

5.2.5 Activities

A process contains a list of activities. There are two types of activities: atomic
activities, or complex activities that consist of multiple atomic and/or complex
activities. An atomic activity is the action activity that performs a WSDL
operation. Below are the complex activities that are used for choreography:
they define which activities are executed and in what order.

• All: performs all activities within this complex activity in a non-sequential

order, possibly in parallel.

• Choice: performs only one activity set based on the first event triggered.
Possible events are the receipt of a message, a timeout or a fault.

• Foreach: performs all activities in the activity set repeatedly, once for each
item in the selected list.

Service Profiling in Business to Business Web Services

 33

• Sequence: performs all activities in the activity set in sequential order.

• Switch: selects one activity set based on the evaluation of one or more
conditions.

• Until: performs all activities in the activity set repeatedly (one or more
times) until the condition evaluates to false.

• While: same as until, but zero or more times.

• Delay: delays execution for a certain period or until a certain point in time.

• Empty: does nothing.

• Fault: triggers a fault in the current context.

Before complex activities can execute, a context has to be initiated.

5.2.6 Global Model

A WSCI interface describes the view of the overall message exchange as
seen from only one participant. The WSCI Global Model makes it possible to
describe a multi-participant view of the overall message exchange. The
Global Model consists of a list of interfaces of the participating services and
links between operations on those services.

5.3 IPR and licensing

When the W3C members BEA Systems, BPMI.org, Commerce One, Fujitsu
Limited, Intalio, IONA, Oracle Corporation, SAP AG, SeeBeyond Technology
Corporation and Sun Microsystems submitted the WSCI specification to the
W3C, they all included an IPR statement in the submission request [wsci-ipr].
Each company declared to grant a royalty free license to any essential claims
necessary to implement WSCI.

5.4 Architecture

The architecture is somewhat different from the general architecture in
chapter 3. The process definition is not the central entity anymore, but is
described as a WSCI interface. A WSCI proxy executes the actual process
and serves as an abstraction for the web service consumer that does not
need to have WSCI support in this case.

Service Profiling in Business to Business Web Services

 34

WSCI process
description

Auxiliary service
Auxiliary service

Auxiliary service

Base service Auxiliary service

Auxiliary service

Web Service Consumer

Internet

Provider domain
 Security gateway

WSCI proxy

Figure 5-1: Service profiling architecture using WSCI

5.5 Discussion

The concept of activities in WSCI makes (online) choreography and
orchestration possible. Transactions are supported through the use of
exception handlers and compensation activities.

The WSCI interface concept makes that the web service consumer is not
unaware of the process. One possible solution is to use a "WSCI proxy" that
inspects the WSCI interface of the base service and executes the process.

Service lifecycle management can be done through regular web service
deployment tools, since the process description can be embedded in the
WSDL description of a web service. Variations of one service can be made by
creating more than one WSDL document per (base) service.

Performance could be an issue here since all auxiliary services need to have
a web service interface, just like BPEL.

Although the specification can be implemented royalty free, there are no
(publicly available) WSCI implementations yet. Also, the standard lacks
backing from several large IT companies like Microsoft and IBM.

Service Profiling in Business to Business Web Services

 35

6 Axis

This chapter describes the details of Axis and will discuss the suitability for
service profiling.

6.1 Introduction

The Apache Software Foundation (http://www.apache.org/) provides support
to a range of open-source software projects. Apache Axis [axis] is one of
those projects, in which volunteers work on an open-source implementation of
the SOAP 1.1 (and a large part of the 1.2) specification submitted to W3C
[soap]. Axis is an application that runs on a java application server or servlet
engine. Axis developers prefer the Jakarta Tomcat server (the official
reference implementation for the java servlet and java server pages
technologies), but Axis runs perfectly well on other J2EE application servers
like IBM Web Sphere, JBoss, Sun One, WebLogic, etc.

Axis comes with an integration guide that describes how to integrate Axis into
your own Java project. Axis is used in the Collaxa BPEL Server, Apple's
WebObjects, Borland Enterprise Server, Borland JBuilder, JBoss Application
Server, IBM's Web Services Toolkit, Macromedia's ColdFusion MX, and many
others.

6.2 How it works

Axis makes methods of standard Java objects accessible via SOAP without
additional programming. Axis generates WSDL automatically and takes care
of the SOAP encoding and decoding. Axis can act both as a client and a
server. If Axis is used as a server, there are two ways to deploy a web
service:

• Rename a .java file to .jws and drop it in the Axis directory on the

application server. All methods are accessible via SOAP and the WSDL is
automatically generated. This way of deploying web services is very
simple but also not very configurable and does not support Java
packages. Also, you need the source code of the deployed service.

• Axis has a Web Service Deployment Descriptor (WSDD) file format that
can be used to specify which methods are allowed to be exposed as web
services and to specify handlers or chains (see below).

There are also two ways to use Axis to invoke a web service:

• Use the WSDL2Java tool to generate Java code that allows a

programmer to call web services as if it were local Java methods.

• Directly use the web service client classes of Axis.

Service Profiling in Business to Business Web Services

 36

When a request arrives at Axis, a Message Context is created and the
message is placed in that context. Then the message will follow a message
path that consists of a request flow, the processing of the request, and
possibly a response flow. These flows contain Handlers. Handlers are Java
objects that can modify the message and it's message context. A Chain is a
special handler that contains a sequence of handlers. Chains are constructed
offline and cannot be altered when they are deployed. Handlers and chains
can be defined to have one instance that handles all messages (singleton
scope) or to have an instance for every request.

If a fault occurs, all handlers prior to the one that raised the fault are invoked
in reverse order to handle the fault.

Figure 6-1: Message path in Axis as a server (Axis Architecture Guide [axis])

If Axis is used as a server, the transport request and global request chains
are invoked if a request arrives. One of these chains contains a handler that
sets the service handler property in the message context. This allows the Axis
engine to select the right service for the request. A service consists of a
request and response chain, and a provider. The provider is a handler
responsible for invoking the actual back end logic of the service. There are
several providers available for different service styles offering increased
automation, from a messaging service that only gives access to the raw XML
data of the exchanged messages to the RPC service that uses SOAP RPC
conventions and performs SOAP encoding and XML-Java data binding.

The response message follows the response message path from the provider
via the service, global and transport chains.

Service Profiling in Business to Business Web Services

 37

Figure 6-2: Message path in Axis as a client (Axis Architecture Guide [axis])

The message path when Axis is acting as a client is almost the same, only the
order of the chains is reversed: first the service chain, then the global chain
and then the transport chain are invoked for the request. The response
message follows the same path backwards.

6.3 IPR and licensing

Axis is open source and is released under the Apache Software License,
Version 1.1 [axislicense]. This license states that copyright notices must be
retained and that documentation must include the acknowledgement "This
product includes software developed by the Apache Software Foundation
(http://www.apache.org/).". Furthermore, the Apache and Xerces names may
not be used for promotions or as a part of the name of the software.

6.4 Architecture

The service profiling architecture is totally different from the general
architecture in chapter 3 when using Axis handlers. There is no central
process engine, and services are only executed in chains. Only interactions
outside of the web service provider are web service interactions (solid lines),
all others are Java based interactions (dotted lines). The process runs in a
Java environment, not in a web services environment. This means that all
service invocations are Java function calls rather than web service
invocations. If there is an auxiliary service in the chain that has a web service
interface, then a service proxy that takes care of the web service invocation
(via the Axis client classes) needs to be used.

Service Profiling in Business to Business Web Services

 38

Axis

Service proxy

Auxiliary service

Auxiliary service

Base service

Auxiliary service

Auxiliary service

Web Service Consumer

Internet

Provider domain
 Security gateway

Figure 6-3: Service profiling architecture using Axis handlers

6.5 Discussion

The concept of a chain of handlers in Axis makes choreography possible.
Orchestration is not possible because data or control dependencies cannot be
realized since services in the chain have a predefined order. This also
prevents online choreography. Transactions are supported to a very limited
extent because fault messages travel through the chain backwards, which
makes a rollback possible.

Deploying and undeploying services is easy with the deployment tools
provided with Axis.

The web service consumer is unaware of the chain of handlers since the
chain is configured when the web service is deployed. Because all
communication between handlers are pure Java function calls, performance is
not an issue.

Since Axis is already being used in a number of commercial and non-
commercial products, there is a large industry support for Axis.

Service Profiling in Business to Business Web Services

 39

7 Java

This chapter will introduce a proprietary Java solution and discuss the
suitability for service profiling.

7.1 Introduction

Instead of using a standard technology, there is always the possibility to make
a proprietary solution, in this case on the J2EE platform. Usually, a J2EE
application server with access to network capabilities is already present in a
telecom network. This way the auxiliary services do not need to have (but can
have!) a web service interface. This can have a positive impact on security
and performance.

The requirements are already described in chapter 1. Because of its good and
widely used SOAP implementation, Axis will be used for handling the
incoming and outgoing SOAP messages.

Since we will need a way to express a process description, we need a
language to define the choreography. The best way is to use an industry
standard scripting language. David Kearns has written an article [kearns] in
which different aspects of integration of a scripting language in a Java
application is discussed. Possible scripting languages are for example Tcl,
Python, JavaScript, or even Java via BeanShell. Performance will be a
special point of interest when choosing a particular scripting engine.
According to [kearns] performance differences can be up to a factor 100
between different engines.

The creation of a process will still be the task of a programmer, unless a
graphical editor is built that provides a drag-and-drop way to create or
manage a process.

7.2 How it works

When a SOAP message arrives at Axis, the information is translated to the
Java domain and serves as the starting point for the service profiling
environment to start a process. This environment serves as the environment
in which the process executes by means of the scripting engine. The
environment takes care that the invocation of the process script is routed to
the right auxiliary services, either directly or via Axis.

Transaction support is limited to the possibility of the scripting language to
catch faults and construct compensation procedures.

The environment also has to take care of correlation to make sure messages
are routed to the right process instance.

7.3 IPR and licensing

When using a proprietary Java solution, there still are IPR and licensing
issues to look into. For IPR and licensing of Axis, please refer to chapter 6.3.
For other existing implementations and/or standards that are used in this
solution there might be IPR and licensing issues, for example for the scripting
engine that is being used.

Service Profiling in Business to Business Web Services

 40

7.4 Architecture

For the SOAP encoding and decoding, Axis is used since it is a widely used
solution. All communication after Axis is done in Java for performance and
flexibility reasons. Invocations from the process to (external) web services are
routed through Axis for SOAP encoding. The dotted lines in figure 7-1
represent Java invocations, while the solid lines represent SOAP interactions.

The scripting engine with the process description runs in a service profiling
environment that takes care of the actual invocations of the auxiliary services
and has a management interface for deploying and undeploying services.

Auxiliary service

Auxiliary service

Auxiliary service

Base service
Auxiliary service

Auxiliary service

Web Service Consumer

Internet

Provider domain
 Security gateway

Axis

 Service
 Profiling
 Environment

Scripting engine

Figure 7-1: Service profiling architecture using a proprietary Java solution

7.5 Discussion

Choreography and orchestration are supported via the scripting engine. This
also enables online choreography and orchestration. Transactions are only
supported to the level the scripting engine supports exception handling.

A management tool for creating and deploying services has to be custom
made. Since the process description is not a standard process description,
there are no standard tools available for process design.

Since the invocations of the auxiliary services are Java, there should not be a
performance issue there. The performance of the scripting engine will play a
vital role in the performance of the overall system.

Service Profiling in Business to Business Web Services

 41

8 Comparison

This chapter provides a comparison between the four discussed technologies
BPEL, WSCI, Axis and Java. The technologies are compared using the
criteria mentioned in section 1.3.

8.1 Introduction

In section 1.3, a number of functional and non-functional criteria are defined.
These criteria are the aspects the four discussed technologies BPEL (chapter
4), WSCI (chapter 5), Axis (chapter 6) and Java (chapter 7) will be compared
on. Each of these last four chapters discusses a technology and points out
some of the aspects. This chapter takes each aspect apart and discusses the
four technologies per aspect.

When comparing these technologies using the aspects mentioned in chapter
1, not all aspects are equally important. The differences in "weight" per aspect
can be expressed into weight factors. A factor of 1 means "average
important", 2 means "more than average important" and 3 means "very
important". Tables 8-1 and 8-2 give an overview of the weight factors. The
reason why a certain aspect has a higher weight factor than others is
discussed in the section discussing that particular aspect.

Functional aspect Weight factor
Choreography 3
Orchestration 1
Transactions 2
Service lifecycle management 1
Online choreography and orchestration 2
Process unawareness 3
Table 8-1: Weight factors for the functional aspects used for comparison

Non-functional aspect Weight factor
Performance 1
Implementation availability 2
Industry support 3
Table 8-2: Weight factors for the non-functional aspects used for comparison

8.2 Functional aspects

The functional aspects form the basis of service profiling. If support for a
certain aspect is not present in a certain technology, that technology does not
support the full service profiling concept. However, that does not mean that
the technology is not suitable for a certain service profiling application.

8.2.1 Choreography

Support for choreography means that the technology can be used to
choreograph several service together. Since this is the basic idea of service
profiling, this aspect has a weight factor of 3. All four technologies support
choreography.

Service Profiling in Business to Business Web Services

 42

8.2.2 Orchestration

Orchestration means that the order in which services are invoked can be
dependent on certain data or control directives. The execution path in a
process might for instance be different depending on the result a service
returns or some other information (time, identity of the WSC). But since this
might not always be a requirement in an application of service profiling, this
aspect only has a weight factor of 1.

BPEL, WSCI and the Java solution all support orchestration because the
process is described using a scripting (-like) language that supports
conditional actions (if statements, switch blocks, etc.). Axis is the only one
that does not support orchestration since all services are invoked one after
another in a chain.

8.2.3 Transactions

Transactions are used to recover from faults and exceptions in a predefined
way so the service profiling environment remains in a stable state and if
necessary the WSC can be provided with a normal fault message.
Transactions are also used to negotiate one common outcome using multiple
services. For this last aspect, the WS-Transaction specification can be used.
Since this aspect is important but not vital, it has a weight factor of 2.

Both BPEL and WSCI have support for fault handlers and transactions. Axis
does not fully support fault handlers since if a fault occurs, all handlers prior to
the one that raised the fault are invoked in reverse order to handle the fault.
The Java solution does have limited exception handling, but no (built in)
support for transactions.

8.2.4 Service lifecycle management

Service lifecycle management includes the whole process of deploying a
service, phasing out, undeploying and versioning. The details of a service
lifecycle are implementation specific, but a general comparison about how to
deploy different services using the same base and auxiliary services can be
made. Because exact details are implementation specific, this aspect only has
weight factor 1.

Designing a service in BPEL simply means writing a BPEL process that uses
existing web services or other BPEL processes (since these are also web
services). With WSCI this is the same, just write a new WSDL. In Axis a new
deployment descriptor with a new chain of services has to be made. The Java
solution also requires writing and deploying a new process script.

8.2.5 Online choreography and orchestration

Online choreography and orchestration means that the actual execution path
in a process is determined at execution time, not at compile or deployment
time. This allows services to be context aware for example. This aspect is not
a core aspect of service profiling and might for some applications not even be
desirable for performance reasons. That is why this aspect has a weight
factor of 2.

Service Profiling in Business to Business Web Services

 43

Axis is the only technology that does not support online choreography and
orchestration, since the chain of services is determined when the service is
deployed.

8.2.6 Process unawareness

For easy integration with other services and take advantage of available web
services tools, the web service consumer must not be aware of the whole
service profiling process behind the service. This is especially important for
standardized interfaces like web services to enable interoperability. Since this
is an important aspect for both technical and business reasons, this aspect
has a weight factor of 3.

All technologies are invocable as a normal web service, except WSCI. But
since the web service consumer must not have direct influence in the
process, a WSCI proxy that executes the process is probably a good idea.

8.3 Non-functional aspects

The non-functional aspects do not actually say anything about the technical
suitability of a certain technique, but if it is wise to use the technique from
technical and business perspective.

8.3.1 Performance

The actual performance is dependent on the implementation of course, but a
high level comparison can be made. This aspect has a weight factor of 1.

Executing a script requires interpretation of that script. Since that is a
performance wise "expensive" task, both the Collaxa BPEL server and IBM
BPWS4J compile the script at deployment time to enhance performance.
WSCI and the Java solution can also be implemented that way. Axis saves
the deployment descriptor that contains the handler configuration as an XML
file that can easily be parsed since it only is a chain. Axis and Java have the
advantage that pure Java calls can be used in the process. Java calls are
usually faster than web service invocations since they do not have the whole
web services protocol and conversion overhead. The Collaxa BPEL server
also has a feature for Java calls, but that is not part of the BPEL specification.

8.3.2 Implementation availability

If there is an implementation available of a technique not only speeds up the
design of a service profiling environment, but is also a proof the technique can
actually be implemented and can be used. This aspect has a weight factor of
2.

This report already mentioned two publicly available BPEL implementations:
the Collaxa BPEL server and IBM BPWS4J. Since Axis is the SOAP
implementation of the Apache group, this is also available. At the time of
writing, no WSCI implementations are (publicly) known. And since the Java
solution is proprietary, no implementation is available, although there are
implementations of scripting environments available.

Service Profiling in Business to Business Web Services

 44

8.3.3 Industry support

Industry support can be very important for a service profiling environment. Not
only may an operator ask for support of certain technology to describe a
process, but also inexpensive general-purpose tools for designing and
maintaining processes might come to market. Also, operator personnel might
already be familiar with the way a process is described. That is why this
aspect has a weight of 3.

Industry support for BPEL is huge. Most major IT companies are member of
the OASIS WSBPEL technical committee. There are fewer companies that
back WSCI, and most of them also back BPEL. Axis is considered as the
main SOAP implementation and is used in a variety of products. Industry
support for a proprietary solution is of course minimal, unless you are able to
make it a de-facto standard. But that is very hard to do.

8.4 Overview

To find out what technique is the "winner" of this comparison, they all get a
certain score for each aspect, where a score of 0 means "no support" or
"bad", 2 means "full support" or "very good", and 1 is something in between.
The total score is calculated by multiplying the score with the weight factor
and add up the score for each aspect. Table 8-3 shows the scoreboard for the
functional aspects, while table 8-4 shows the same for the non-functional
aspects.

Functional aspect WF BPEL WSCI Axis Java
Choreography 3 2 2 2 2
Orchestration 1 2 2 0 2
Transactions 2 2 2 1 1
Service lifecycle management 1 2 2 2 2
Online choreography and orchestration 2 2 2 0 2
Process unawareness 3 2 1 2 2
Score 24 21 16 22
Table 8-3: Scoreboard functional aspects (WF = Weight Factor)

As you can see BPEL is the winner here. Axis mainly loses points on the fact
that it does not support (online) orchestration. For the rest it is a reasonable
close finish.

Non-functional aspect WF BPEL WSCI Axis Java
Performance 1 1 1 2 2
Implementation availability 2 2 0 2 0
Industry support 3 2 1 2 0
Score 11 4 12 2
Table 8-4: Scoreboard non-functional aspects (WF = Weight Factor)

Axis is the winner for the non-functional aspects, with BPEL close at second
place. The lack of available implementation and industry support are what
causes WSCI and Java to fail here.

Service Profiling in Business to Business Web Services

 45

If you add up the scores for all aspects you get the final score, listed in table
8-5. The functional aspects weigh twice as much as the non-functional
aspects as the techniques can earn twice as much points on the functional
aspects. This makes sense, since for example industry support is nice, but if
the technique is not suitable for the task it is not of much use.

 BPEL WSCI Axis Java
Functional aspects 24 21 16 22
Non-functional aspects 11 4 12 2
Total score 35 25 28 24
Table 8-5: Total score

BPEL is the winner in this comparison, with only one point below the
maximum score of 36. To prove that BPEL is actually suitable for service
profiling, a prototype has been made that is described in the next chapter.

Service Profiling in Business to Business Web Services

 46

Service Profiling in Business to Business Web Services

 47

9 Prototype

This chapter describes the prototype that was built to demonstrate the
suitability of BPEL for service profiling.

9.1 Introduction

The conclusion of chapter 8 was that BPEL had the best score in the
comparison. A prototype has been made to see if BPEL is indeed a suitable
technique for service profiling and to get some hands on experience on
service profiling and BPEL.

For a quick implementation of a prototype, an already existing BPEL
implementation was used. On the J2EE platform, two implementations were
available: IBM BPWS4J and the Collaxa BPEL server. The last one was
chosen because of the BPEL console that makes it possible to easily debug,
audit and test deployed processes.

9.2 The Collaxa BPEL server

The basis for the prototype is the BPEL implementation from Collaxa
[collaxa], the Collaxa BPEL server 2.0. Several names are being used for the
same product: Collaxa BPEL server, Collaxa BPEL Orchestration Server,
Collaxa Orchestration Server and Collaxa Web Service Orchestration Server.
In this report, the name Collaxa BPEL server is used.

The 30-day trial version is available for download on the Collaxa website in
two flavors: Collaxa Stand Alone (which includes the JBoss application server
and Pointbase database server) and Collaxa for BEA WebLogic. Apart from
these platforms, the Collaxa BPEL server is available for the SunONE
application server, IBM WebSphere and Oracle 9i.

For the prototype, the stand-alone package (Collaxa BPEL Server 2.0
Release Candidate 2) is used. The package contains:

• JBoss application server

• Pointbase database server

• Collaxa BPEL engine (orchestration server)

• BPEL console (a web application deployed on JBoss that can be used to
view and test deployed processes and monitor, audit and debug running
and completed process instances)

• API documentation

• Examples

• Command-line tools for deploying a process

Service Profiling in Business to Business Web Services

 48

Apart from BPEL, the Collaxa BPEL server supports JBPEL, a JSP-like
programming abstraction that combines BPEL with Java. JBPEL offers the
asynchrony, flow coordination and compensating business flow capabilities of
BPEL, WS-Transaction and WS-Coordination, plus native support for Java,
EJBs and JCA, JSP integration, JMS and e-mail with attachments based
messaging, sub flows, events, dynamic branching, sophisticated join patterns
and more. But since JBPEL is not BPEL it is out of scope for this project.

Figure 9-1: Collaxa BPEL server architecture (Collaxa website [collaxa])

Figure 9-1 shows an overview of the server architecture. Note that integrating
components, connectors, etc. other than XML web services requires a JBPEL
rather than a BPEL process and is out of scope for this project. Dehydrate in
figure 9-1 means that inactive instances are stored in the database until they
become active again.

9.3 Designing, deploying and testing a BPEL process

The design and deployment of a BPEL process can be broken into four steps:

• Add partner link information to auxiliary and base services if not already
present

• Design the process

• Make deployment descriptors

• Deploy the process using the provided deployment tools

Service Profiling in Business to Business Web Services

 49

9.3.1 Partner links

BPEL requires the WSDL of each service to contain information about the
partner links describing the roles the service can play in a conversation. Since
this is a rather BPEL-specific feature, you usually first have to add this
information to the WSDL file of a service. Refer to section 4.2.1 for more
information about partner links in BPEL.

9.3.2 The process

The process description is formatted in BPEL, a kind of XML scripting
language. You can design the process in a variety of ways: you may choose
to directly write the XML code in a text or XML editor like GEL
(www.gexperts.com), use a graphical environment like VisualScript XML
(www.visualscript.com), the IBM BPWS Eclipse plug-in [bpws4j] or the
Collaxa BPEL Designer Eclipse plug-in (www.collaxa.com) (see figure 9-2 for
screenshots). In the design process, you will need the WSDL files of the base
and auxiliary services as the partner links, operations, messages and port
types are used or referenced in the BPEL file.

Figure 9-2: Screenshots of four ways to edit a BPEL process: IBM BPWS Eclipse
plug-in, VisualScript XML, Collaxa BPEL Designer Eclipse plug-in and GEL.

Service Profiling in Business to Business Web Services

 50

Since the BPEL process itself is invoked as a web service, a WSDL file for the
process has to be provided for the process. A development environment can
(partially) generate this WSDL file, or it can be hand made in a text or XML
editor.

9.3.3 Deployment descriptor

If a BPEL process needs to be deployed in the Collaxa BPEL server, two
additional files are needed: a build file containing the tasks for the Apache Ant
tool and a BPEL deployment descriptor containing the URLs or filenames of
the files needed for deploying the process: the BPEL process description, its
WSDL and the WSDLs of all web services used in the process.

The build file usually contains a "bpelc" task for compiling the BPEL process,
and can also include other tasks for deploying additional web services, BPEL
processes, servlets, etc. The build file is also used to specify the BPEL
domain the process is deployed to and the name and revision tag of the
process.

The Collaxa BPELZ editor automatically creates the deployment descriptor
and build file. The editor also provides integration with the Collaxa BPEL
server as you can deploy processes from within the editor.

9.3.4 Deploy

Running Apache Ant on the build file deploys a BPEL process. A command
line script for invoking Ant the right way is packaged with the Collaxa BPEL
server (collaxa/bin/cxant.bat). The "bpelc" task runs a syntax check on the
BPEL process and all specified WSDLs before a BPEL execution map is
compiled. This execution map is a Java representation of the BPEL process.
Then everything (the BPEL source, java source and classes of the execution
map and WSDLs) is packed into a jar file and deployed on the server. The
directory collaxa/domains/default/deploy contains all jars of the processes
deployed in the default domain. The filename of the jar file is formatted as
"bpel_[name of the process]_[revision tag].jar". If a process is deployed with
the same name and revision, the jar file is overwritten, causing any running
instances to throw an exception.

The generated jar file is a package that can instantly be deployed on other
Collaxa BPEL servers (with the same server software version). The BPEL
source can be deployed on other BPEL implementations but may require a
different deployment descriptor and deployment procedure.

The Collaxa BPEL server supports side-by-side versioning of processes:
different revisions of the same process can coexist. Each revision is packed
into its own jar file. The endpoint reference of a BPEL process looks like
http://servername/collaxa/default/SendSMS/1.0 for the 1.0 revision of the
SendSMS process on the default domain. If the revision tag is omitted, the
latest deployed revision is always used to instantiate the new process
instance. The WSDL file of the process always contains the endpoint
reference to the latest deployed revision, including the revision tag.

Service Profiling in Business to Business Web Services

 51

If a new revision of a process is deployed, the old revision remains available,
so existing instances of a process can continue to run until they terminate
normally, while new instances use the new revision. This technique is called
dynamic update and is one of the requirements in a telecom environment to
be able to deliver high availability.

Using the BPEL console, the mode (open or closed) and state (on or off) of a
process can be controlled. If a process is closed, no new instances may be
instantiated but existing instances are permitted to complete normally. If the
state of a process is set to "off", no new instances may be instantiated and
access to existing instances will be denied.

9.3.5 Test

The Collaxa BPEL server comes with a BPEL console that allows developers
to inspect, debug, audit, test and manage deployed processes. Below are two
screenshots of the BPEL console.

Figure 9-3a: Screenshot of the BPEL console: testing a process

Service Profiling in Business to Business Web Services

 52

Figure 9-3b: Screenshot of the BPEL console: visual representation of a completed
instance

9.4 Example SendSMS process

Consider the SendSMS service described in section 3.2. To show more of the
service profiling features, the example will be modified to include an
asynchronous web service, a fault handler and timeout handling. The
flowchart of the modified SendSMS service is shown in figure 9-4.

Invoke SendSMS
service

Recipient signed
opt-out?

Log request

Send the SMS

Charge sender

Send
succesfull?No

Yes

Fault OK

Yes

Wait for
notification or

timeout

In case of fault

Log notification
failed

No

Figure 9-4: Modified version of the flowchart in figure 3-1

Service Profiling in Business to Business Web Services

 53

9.4.1 Base and auxiliary services

In order to implement the example process, these auxiliary and base services
are implemented:

• LogService, a one-way web service that takes a text as parameter and
writes the text and the current time to an event log.

• OptOutCheckService, a synchronous web service that takes a phone
number as parameter and returns true if the owner of the specified phone
number has signed an opt-out form, otherwise the service will return false.

• ChargeService, a synchronous web service that takes two parameters: a
phone number and an amount. The service always returns true.

• SendMessageService, the base service. This web service needs three
parameters: sender phone number, recipient phone number and a
message. The service returns a message identifier that can be used to get
a notification of the delivery of the message, using the
DeliveryNotificationService.

• DeliveryNotificationService, an asynchronous web service that is invoked
with a message identifier and performs a callback if the message is
delivered.

All services are implemented as Java classes and deployed as web services
using Axis on Tomcat, except for the DeliveryNotificationService, which is
implemented as a BPEL process on the Collaxa BPEL server. Refer to figure
9-5 for an overview.

Apache Tomcat

Apache Axis

LogS
ervice

O
ptO

utC
heckS

ervice

C
hargeS

ervice

S
endM

essageS
ervice

JBoss

Collaxa BPEL server

D
eliveryN

otificationS
ervice

S
endS

M
S

web service endpoints

Pointbase
database

Figure 9-5: Overview of the services in the prototype

To make things easy, these web services don’t actually do anything except
writing a line to the event log and returning values. For testing purposes, the
result of the base and auxiliary services are dependent on the last digit of the
phone number of the recipient. Details can be found in section 9.5: Testing
the process.

Service Profiling in Business to Business Web Services

 54

9.4.2 The BPEL process

The BPEL process was created using an XML editor, as not all graphical
editors are very easy to work with yet and to maintain complete control over
the BPEL source code.

Figure 9-6 shows an outline of the actual BPEL process and provides a link
between the flowchart in figure 9-4 and the BPEL source code. All words
between < and > map directly to BPEL activities that can be found in the
source code, while the names with the little arrows refer to the BPEL variables
and SOAP messages that are exchanged between the BPEL process and the
external web services.

In the upper left corner are the global fault handlers. They catch any fault that
is either explicitly thrown by the BPEL process or occur in the process.
Around the <invoke SendMessageService/> is a sub-scope with its own fault
handler to catch any fault in any namespace when invoking the
SendMessageService and rethrows the "sendFailed" fault in the namespace
of the process.

Refer to appendix 1 for the complete BPEL source code and appendix 2 for
the accompanying WSDL.

Service Profiling in Business to Business Web Services

 55

BPEL process
<scope>
 <faultHandlers>
 <catch userSignedOptOut exception>
 <reply userSignedOptOut fault/>
 </catch>
 <catch sendFailed exception>
 <reply sendFailed fault/>
 </catch>
 <catchAll>
 <reply unknownException fault/>
 </catchAll>
 </faultHandlers>

</scope>

<scope>
 <faultHandlers>
 <catchAll>
 <throw sendFailed exception/>
 </catchAll>
 </faultHandlers>
</scope>

<receive request/>

request →
<switch/>

OptOutCheck
Service LogService

<throw
userSignedOptOut

exception/>

<invoke
SendMessageService/>

<reply true/>

<invoke
DeliveryNotificationService/>

Send
Message
Service

sendRequest →
← sendResponse

Delivery
Notification

Service

registerNotification →

<onMessage/><onAlarm after 1
minute/>

<invoke ChargeService/> Charge
Service

chargeRequest →
← chargeResponse<invoke LogService/>LogService ← logRequest

logResponse →

response →

← notification

<switch/>

<assign false to
notification/>

<case notification=true/><case notification=false/>

<otherwise/>

<case

<pick which
occurs first/>

optoutResponse
=true/>

<flow/>

<invoke LogService/><invoke
OptOutCheckService/>

logRequest →
← logResponse

← optoutRequest
optoutResponse →

X end endX

Figure 9-6: Pseudo-flowchart of the SendSMS process that can be mapped to the
BPEL source

Service Profiling in Business to Business Web Services

 56

9.5 Testing the process

Several test cases are built in to be able to test specific aspects of the service
profiling process. The behavior of the base and auxiliary services is
dependent on the last digit of the phone number of the recipient.

9.5.1 Case 1: user signed opt-out

If the last digit of the phone number is a 0, the OptOutCheckService will return
true, indicating that the recipient has signed an opt-out form and the sender is
not allowed to send a message to this recipient. The SendSMS process
throws a fault that is caught by the global fault handlers of the process and a
SOAP fault message with the userSignedOptOut fault is returned.

9.5.2 Case 2: service throws exception

If the last digit of the phone number is a 1, the SendMessageService throws
an exception that is caught by the local fault handler in the SendSMS
process. The fault is rethrown as a sendFailed fault in the SendSMS
namespace. This fault is caught by the global fault handlers of the process
and a SOAP fault message with the sendFailed fault is returned.

9.5.3 Case 3: delivery failed

If the last digit of the phone number is a 2, the DeliveryNotificationService
performs a callback on the "notification" operation 30 seconds after the
"register" operation. The value of the notification is "false", indicating that the
delivery failed. The SendSMS process does therefore not invoke the
ChargeService but invokes the LogService to write to the log file that the
delivery has failed. The SendSMS process will return "true" indicating that
sending the message succeeded.

9.5.4 Case 4: delivery notification timeout

If the last digit of the phone number is a 2, the DeliveryNotificationService
performs a callback on the "notification" operation 3 minutes after the
"register" operation. The value of the notification is "true", indicating that the
delivery succeeded. But the timeout (<onAlarm/>) in the SendSMS process is
set at one minute so the timeout will occur first. The process does not invoke
the ChargeService but invokes the LogService to write to the log file that the
delivery has failed. The SendSMS process will return "true" indicating that
sending the message succeeded.

9.5.5 Case 5: normal operation

If the last digit of the phone number is anything but a 0, 1 or 2, the
DeliveryNotificationService performs a callback on the "notification" operation
30 seconds after the "register" operation. The value of the notification is
"true", indicating that the delivery succeeded. The process invokes the
ChargeService to charge the sender for the message. The SendSMS process
will return "true" indicating that sending the message succeeded.

Service Profiling in Business to Business Web Services

 57

9.5.6 Performing the tests

The tests were performed on a desktop PC running the prototype on Apache
Tomcat, Apache Axis and the Collaxa BPEL server. The XMLSpy tool
(www.xmlspy.com) was used to construct the SOAP requests for invoking the
SendSMS service and to inspect the returned SOAP messages. XMLSpy
automatically generated a SOAP request based on the WSDL of a web
service. Since the XMLSpy tool is a general web service tool and not BPEL
aware, this also was a test for the unawareness of the whole underlying
process.

The prototype passed all tests successfully.

9.6 Discussion

The prototype gives a good notion of the possibilities of BPEL. It also shows
that BPEL is very well suited for service profiling. The prototype contains
almost all functional aspects that were identified in chapter 1.

The prototype supports (online) choreography because multiple services are
combined into one with the result being dependent on the parameters of the
invocation, orchestration because of several conditional actions (see the two
<switch/> blocks in figure 9-6), the invoking tool (XMLSpy) does not need to
know anything of BPEL and the service lifecycle is well defined an
manageable through the BPEL console. Transactions are supported via the
fault handlers in the process. Longer running transactions with rollback
procedures are not tested, but the Collaxa BPEL Server comes with a few
examples that support transactions using the built-in support for WS-
Transaction. Additional features that are included in the prototype are both
synchronous and asynchronous web services and exception handling.

It is not possible to say very much specific about the performance in a real
world situation. The tests were performed on a normal desktop machine
(Pentium 3, 800Mhz, 512MB RAM) and showed reasonable fast response
times once the process was loaded into memory. Network latencies were not
tested as everything was run on one machine only. For extra performance
and reliability, the Collaxa BPEL Server is scalable into a cluster of multiple
servers with a centralized (Oracle) database.

Designing a process was found to be rather easy when you are familiar with
BPEL. Unfortunately, present editors still require that the designer has some
knowledge about XML, XMLSchema, WSDL and XML namespaces.
Processes designed with standard XML and BPEL tools could easily be
deployed on the BPEL server using the deployment tools that came with it.

An offered service in a telecom environment needs some extra features.
Usually a profile is selected that contains the settings and Service Level
Agreement (SLA) that belong to the service requester. This profile selection
process can best be combined with the authentication and authorization since
that is something that needs to be performed for each process. This way not
every process that is designed needs to explicitly include a profile selection
service.

Service Profiling in Business to Business Web Services

 58

Because BPEL instances can not share variables, it is not easy to embed
SLA runtime enforcement into a BPEL process. Two alternatives are to make
a SLA runtime enforcement web service or embed it in the base and auxiliary
services where needed.

Another concern when using BPEL in a telecom environment is if the BPEL
server supports the OA&M (operations, administrations and management)
and provisioning facilities of an operator. If this is not the case, managing the
BPEL server may be very costly. In other words, it might be a concern to what
extent the BPEL server can be integrated in the network of an operator.

The Collaxa BPEL Server has some limitations regarding the BPEL
specification. The server does not support BPEL properties, which makes it
impossible to read or write the SOAP headers. Since the Collaxa BPEL
Server takes care of the WS-Addressing headers in asynchronous web
services, it is not possible to create a combined synchronous and
asynchronous process (a process with a request/reply/notify interaction
scheme).

Service Profiling in Business to Business Web Services

 59

10 Limitations and improvements

Based on the experience gained during the research, this chapter presents
the limitations when using BPEL for service profiling. The last paragraph
contains some suggestions for improvements to overcome the limitations.

10.1 Introduction

The ideal service profiling technique would score the maximum number of
points in chapter 8. But the criteria mentioned in chapter 8 are not the only
aspects the ideal technique should include. As BPEL scores almost the
maximum number of points, it serves as a good starting point. By discussing
the limitations of BPEL that came up during the research and the
implementation of the prototype it becomes clear what features the ideal
technique should have and how BPEL can evolve towards that ideal
technique.

10.2 BPEL limitations

The only aspect from chapter 8 where BPEL does not score the maximum
number of points is performance. This is because all base and auxiliary
services must be web services. So even if a service is a local service that can
easily be directly invoked there is the web service overhead of SOAP
encoding and decoding including all extra features like WS-Transaction or
WS-Addressing. The overall performance of the service profiling process
would be much better if local services do not need to have a web service
interface, but an interface with less (processing) overhead. Collaxa introduces
a number of extensions to BPEL which make it possible to integrate other
types of services like J2EE components and JMS destinations (see figure 9-
1), but these extensions are not standardized, and (what might be even more
important) not platform independent.

The fact that BPEL expects a partnerlink declaration in the WSDL of every
service that is used in the process, limits the easy development of BPEL
processes, as almost no web services at all include partner links (yet). This
could be something that is automatically added in the future if BPEL is very
widely used, but since it does not provide extra information but is merely an
abstraction from the WSDL port types, maybe it would have been better not to
implement it in this way. Now a BPEL designer first has to make an adapted
version of the WSDL for each service before the service can be used in a
BPEL process.

The number of operations on variables, properties and expressions is very
limited. For the BPEL 1.1 version, XPath 1.0 is used as query and expression
language. XPath 1.0 provides only a very limited set of data types and
operations (for example, there is no date/time data type and division of
numbers is not possible). It is possible to use a different language, but the
BPEL engine has to support that language. XPath 1.0 is at present the only
language a BPEL engine must support, so using another language (or
another version of XPath) will probably break compatibility with other BPEL
engines.

Service Profiling in Business to Business Web Services

 60

As signalled in section 9.6, BPEL itself is not suitable to embed SLA runtime
enforcement. Since introducing variables that are shared between instances
of a process would mean a rather fundamental change in BPEL, it might be
better to design a SLA enforcement (web) service or embed the enforcement
in the base and auxiliary services where needed.

The current BPEL editors are very limited in their possibilities. Of the editors I
have tried (refer to section 9.3.2), the Collaxa BPEL designer is the most
advanced and easy to use editor, but it is still in very early beta stage. This
editor is the only one that lets you import a WSDL and select possible values
from drop down boxes instead of having to type them yourself. The process
description is built by dragging and dropping activities into place and fill in or
select the right parameters. Although this editor is on the right way, you
sometimes still need to type in message names and namespace identifiers.
Also, you just have to type in the WSDL of the process. So a BPEL designer
still needs knowledge about XML, WSDL, XMLSchema and XML
namespaces, etc.

10.3 Improvements

BPEL is on the right track for service profiling, but there are some points that
need to be improved in future versions:

• Extensions should be included to make it possible to call services other
than web services

• The partner links in the WSDL must be optional

• The query and expression language must be upgraded to a language with
more features, like XPath 2.0 (which includes XQuery)

• The BPEL editors need to mature so a BPEL designer only has to focus
on the business aspects of the process and spend only minimal effort on
the technical details

Service Profiling in Business to Business Web Services

 61

11 Conclusions and recommendations

This chapter presents the conclusions of this research. It also identifies some
recommendations for Ericsson for implementing a service profiling
environment.

11.1 Conclusions

From the web services state of the art overview it becomes clear that
although the basic standards for web services are well defined, the additional
specifications are far from standardized and some of them show considerable
overlap with other specifications. The WS-I does a good job on interoperability
by defining profiles that state what versions and what specifications to use.
Also, IPR claims can form a barrier for the worldwide adoption of some of the
specifications.

The best service profiling technique of the one reviewed in this report is
BPEL. The other techniques lose most points on lack of support for online
orchestration (Axis), implementation availability and industry support (WSCI
and the proprietary Java solution).

The BPEL service profiling prototype showed that BPEL is indeed suitable for
service profiling, but it also showed the limitations when using BPEL for this
purpose. The main issue is performance because of the web services
overhead when invoking base and auxiliary services. The other limitations are
likely to be taken away by later versions of the BPEL language.

Furthermore, the prototype showed that designing a new process or making a
new version of an already existing service is very easily done using standard
XML and BPEL tools and the deployment tools that came with the BPEL
server.

Right now, the BPEL language and products are probably not mature enough
to offer telecom grade applications. But with such a large industry support it
will only be a matter of time until the BPEL language, servers and editors
mature.

11.2 Recommendations

Ericsson should watch BPEL closely because it is likely to become the
dominant service integration technique for web services. If Ericsson wants to
stay informed of early developments in the BPEL area, it is advisable to
become an OASIS Contributor and join the BPEL Technical Committee. It is
up to Ericsson if it also wants to contribute to the BPEL language, as it is not
its core business.

For the integration of BPEL in Ericsson products, additional research should
be done to check the performance and reliability of the BPEL implementation
that will be used. Also, integration with OA&M and provisioning facilities
should be tested.

Service Profiling in Business to Business Web Services

 62

A market study needs to show if operators are willing to use BPEL for creating
service offerings and if they are ready for this new approach in service
creation by (visually) scripting a process. The study also needs to come up
with specific requirements for the service profiling environment. If they are
very different from the functional and non-functional criteria used in this
research the choice for a certain technique might be completely different.

The OASIS BPEL Technical Committee should consider the suggested
improvements by allowing other services than web services, making the
partner link declarations in WSDL optional and upgrade the query and
expression language to XPath 2.0.

Service Profiling in Business to Business Web Services

 63

References

[3gpp] Third Generation Partnership Project, http://www.3gpp.org/

[anderson] A. Anderson, Minutes from XACML Focus Group on RBAC, 24 april 2003,
XACML OASIS mailing list, April 24, 2003, http://lists.oasis-
open.org/archives/xacml/200304/msg00067.html

[axis] Apache Axis, http://ws.apache.org/axis/

[axislicense] The Apache Software Foundation, The Apache Software License, Version
1.1, http://ws.apache.org/dist/LICENSE.txt

[basicprofile] Keith Ballinger et al., Basic Profile Version 1.0a, August 8, 2003,
http://www.ws-i.org/Profiles/Basic/2003-08/BasicProfile-1.0a.htm

[berlind] David Berlind, BPEL4WS vs. WSCI, March 6, 2003,
http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2912083-
2,00.html

[bpel1.0] Francisco Curbera et al., Business Process Execution Language for Web
Services version 1.0, August 2002, http://msdn.microsoft.com/library/en-
us/dnbiz2k2/html/bpel1-0.asp

[bpel1.1] Tony Andrews et al., Business Process Execution Language for Web
Services version 1.1, May 5, 2003, http://www.oasis-
open.org/committees/download.php/2046/BPEL%20V1-
1%20May%205%202003%20Final.pdf

[bpellicense] Microsoft, Royalty Free Business Process Execution Language for Web
Services Specification License Agreement,
http://msdn.microsoft.com/webservices/docs/bpel_license.aspx

[bpws4j] The IBM Business Process Execution Language for Web Services JavaTM
Run Time (BPWS4J), http://alphaworks.ibm.com/tech/bpws4j

[btp] OASIS Committee Specification, Mike Abott et al., Business Transaction
Protocol version 1.0, June 3, 2002, http://www.oasis-
open.org/committees/business-transactions/documents/specification/2002-
06-03.BTP_cttee_spec_1.0.pdf

[chappell] Dave Chappell, Will the Real Reliable Messaging Please Stand Up?, April 8,
2003, http://xml.coverpages.org/Chappell-WSRelSOAP.pdf

[collaxa] Collaxa BPEL Server 2.0, http://www.collaxa.com/product.welcome.html

[coverpages] Cover Pages, Web Services Specifications for Business Transactions and
Process Automation, August 12, 2002, http://xml.coverpages.org/ni2002-08-
12-a.html

[della-libera] Giovanni Della-Libera et al., Security in a Web Services World: a Proposed
Architecture and Roadmap; A Joint White Paper from IBM Corporation and
Micorosft Corporation, April 7, 2002, http://msdn.microsoft.com/library/en-
us/dnwssecur/html/securitywhitepaper.asp

Service Profiling in Business to Business Web Services

 64

[dime] IETF Internet-Draft, Henrik Frystyk Nielsen et al., Direct Internet Message
Encapsulation (DIME), June 17, 2002, http://msdn.microsoft.com/library/en-
us/dnglobspec/html/draft-nielsen-dime-02.txt

[ebxml] ebXML, http://www.ebxml.org/

[ecma] Ecma International, Standard ECMA-348: Web Services Description
Language (WSDL) for CSTA Phase III, June 2003, http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-348.pdf

[fontana] J. Fontana, Liberty turning first spec over to OASIS as turmoil brewing over
identity management, April 11, 2003,
http://www.nwfusion.com/news/2003/0411liboasis.html

[freedman] Michael Freedman, Overview of WSRP and JSR 168 standards – An
interview with Michael Freedman, July 12, 2002,
http://portalstudio.oracle.com/pls/ops/docs/FOLDER/COMMUNITY/
PDK/ARTICLES/overview.wsrp.jsr168.standards.interview.html

[furniss] Peter Furniss and Alistair Green, WS-C+T and BTP: Comments and
comparisons, November 20, 2002,
http://www.choreology.com/standards/btp_wsc+t.html

[govatos] Greg Govatos, UDDI is Yellow Pages of Web services, May 27, 2002,
http://www.nwfusion.com/news/tech/2002/0527tech.html

[httpr] Andrew Banks et al., HTTPR Specification, April 1, 2002, http://www-
106.ibm.com/developerworks/library/ws-httprspec/

[irani] R. Irani, Part II – ebXML and Web Services, The Way to do Business, July
25, 2001, http://www.webservicesarchitect.com/content/articles/irani03.asp

[kearns] D. Kearns, Java scripting languages: Which is right for you?, April 5, 2002,
http://www.javaworld.com/javaworld/jw-04-2002/jw-0405-scripts.html

[liberty] The Liberty Alliance Project, http://www.projectliberty.org/

[mms] 3GPP TS 23.140: Multimedia Messaging Service (MMS); Functional
Description; Stage 2, version 5.6.0 Release 5, March 2003,
http://www.3gpp.org/ftp/Specs/archive/23_series/23.140/23140-560.zip

[oma] Open Mobile Alliance, http://www.openmobilealliance.org/

[omaoverview] Open Mobile Alliance, Fostering Worldwide Growth in the Mobile Service
Market, March 2003, http://www.openmobilealliance.org/docs/OMA-
PublicOverviewFinal.pdf

[omarelease] Open Mobile Alliance, Overview of OMA Release Program, April 2003,
http://www.openmobilealliance.org/docs/OMA_Release_Program_
Overview_2003_April.pdf

[parlay] The Parlay Group, http://www.parlay.org/

[roberts] P. Roberts, Liberty Alliance releases spec to coexist with Passport,
February 7, 2003, http://www.nwfusion.com/news/2003/0207liberallia.html

Service Profiling in Business to Business Web Services

 65

[saml] OASIS Security Services Technical Committee, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security

[soap] W3C Note, Don Box et al., Simple Object Access Protocol (SOAP) 1.1, May
8, 2000, http://www.w3.org/TR/SOAP/

[soapattach] W3C Note, John Barton et al., SOAP Messages with Attachments,
December 11, 2000, http://www.w3.org/TR/SOAP-attachments

[soapattach2] Adam Bosworth et al., SOAP Messages with Attachments, April 1, 2003,
http://dev2dev.bea.com/technologies/webservices/SOAP_Messages_
Attachments.jsp

[taft] Daryll Taft, Tackling Web Service Transactions, September 23, 2003,
http://www.eweek.com/article2/0,4149,1276856,00.asp

[uddi] OASIS UDDI member section, http://www.uddi.org/

[wsack] Ruslan Bilorusets et al., Web Service Acknowledgement Protocol (WS-
Acknowledgement) 0.91, February 26, 2003,
http://dev2dev.bea.com/technologies/webservices/WS-Acknowledgement-
0_9.jsp

[wsaddressing] Adam Bosworth et al., Web Services Addressing (WS-Addressing), March
13, 2003, http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-
addressing.asp

[wsattach] IETF Internet-Draft, Henrik Frystyk Nielsen et al., WS-Attachments, June
17, 2002, http://msdn.microsoft.com/library/en-us/dnglobspec/html/draft-
nielsen-dime-soap-01.txt

[wscallback] Yaron Goland et al., WS-CallBack Protocol (WS-CallBack) 0.91, February
26, 2003, http://dev2dev.bea.com/technologies/webservices/WS-CallBack-
0_9.jsp

[wsci] W3C Note, Assaf Arkin et al., Web Service Choreography Interface (WSCI)
1.0, August 8, 2002, http://www.w3.org/TR/wsci/

[wsci-ipr] David Orchard et al., Submission request to the World Wide Web
Consortium, June 28, 2002, http://www.w3.org/Submission/2002/04/

[wscoordination] Felipe Cabrera et al., Web Services Coordination (WS-Coordination),
August 2002, http://dev2dev.bea.com/technologies/webservices/ws-
coordination.jsp

[wsdl] W3C Note, Erik Christensen et al., Web Services Description Language
(WSDL) 1.1, March 15, 2001, http://www.w3.org/TR/wsdl

[wsfl] Prof. Dr. F. Leymann, Web Services Flow Language (WSFL 1.0), May 2001,
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[wsia] OASIS Web Services Interactive Applications Technical Committee,
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsia

Service Profiling in Business to Business Web Services

 66

[wsmanage] XML Cover Pages, IBM, Computer Associates, and Talking Blocks Release
WS-Manageability Specification, September 15, 2003,
http://xml.coverpages.org/ni2003-09-15-b.html

[wsmsgdata] Yaron Goland et al., Web Services Message Data (WS-MessageData) 0.91,
February 26, 2003, http://dev2dev.bea.com/technologies/webservices/WS-
MessageData-0_9.jsp

[wspolicy] MSDN, WS-Policy Specification Index Page, http://msdn.microsoft.com/
library/en-us/dnglobspec/html/wspolicyspecindex.asp

[wsreferral] Henrik Frystyk Nielsen et al., Web Services Referral Protocol (WS-Referral),
October 23, 2001, http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-referral.asp

[wsreliability] Colleen Evans et al., Web Services Reliability (WS-Reliability) Ver1.0,
January 8, 2003, http://developers.sun.com/techtopics/webservices/ws-
reliability.v1.0.pdf

[wsreliablemsg] Ruslan Bilorusets et al., Web Services Reliable Messaging Protocol (WS-
ReliableMessaging), March 13, 2003, http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-reliablemessaging.asp

[wsrouting] Henrik Frystyk Nielsen and Satish Thatte, Web Services Routing Protocol
(WS-Routing), October 23, 2001, http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-routing.asp

[wsrp] Alan Kropp et al., Web Services for Remote Portlets Specification; working
draft 0.94, April 10, 2003, http://www.oasis-open.org/committees
/download.php/1510/wsrp-specification-1.0-draft-0.94.pdf

[wssecurity] MSDN, WS-Security Specification Index Page, http://msdn.microsoft.com/
library/en-us/dnglobspec/html/wssecurspecindex.asp

[wstransaction] Felibe Cabrera et al., Web Services Transaction (WS-Transaction), August
2002, http://dev2dev.bea.com/technologies/webservices/ws-transaction.jsp

[wstransaction2] XML Cover Pages, Updated Specifications for the Web Services
Transaction Framework, September 16, 2003,
http://xml.coverpages.org/ni2003-09-16-a.html

[wsui] Ed Anuff et al., Web Service User Interface (WSUI) 1.0, July 26, 2002,
http://www.wsui.org/doc/wsui

[wsxl] IBM Note, Ali Arsanjani et al., (WSXL) Web Services Experience Language
Version 2, April 10, 2002,
http://www-106.ibm.com/developerworks/library/ws-wsxl/

[xacml] OASIS eXtensible Access Control Markup Language TC, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

[xlang] Satish Thatte, XLANG Web Services for Business Process Design, May
2001, http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/

[xmlrpc] XML-RPC Home Page, http://www.xmlrpc.org/

Service Profiling in Business to Business Web Services

 67

List of abbreviations

3GPP Third Generation Partnership Project
API Application Programming Interface
ASP Application Service Provider
B2B Business to Business
BPEL Business Process Execution Language
BPEL4WS Business Process Execution Language for Web Services
BTP Business Transaction Protocol
CPA Collaboration Protocol Agreement
CPP Collaboration Protocol Profile
CSTA Computer Supported Telecommunications Applications
DIME Direct Internet Message Encapsulation
ebXML electronic business XML
EJB Enterprise Java Bean
ETSI European Telecommunication Standard Initiative
HTML Hypertext Markup Language
HTTP HyperText Transfer Protocol
HTTPR Reliable HTTP
ICT Information and Communication Technology
ID Identifier
ID-FF Identity Federation Framework
ID-SIS Identity Services Interface Specifications
ID-WSF Identity Web Services Framework
IETF Internet Engineering Task Force
IN Intelligent Networks
IP Internet Protocol
IPR Intellectual Property Rights
ISO International Organization for Standardization
IT Information Technology
J2EE Java 2 Enterprise Edition
JAIN Java Advanced Intelligent Network
JBPEL Java BPEL
JCA J2EE Connector Architecture
JCP Java Community Process
JMS Java Message Service
JSP Java Server Pages
LDAP Lightweight Directory Access Protocol
MIME Multi-purpose Internet Mail Extensions
MMS Multimedia Messaging Service
OASIS Organization for the Advancement of Structured Information

Standards
OA&M Operations, Administration and Management
OMA Open Mobile Alliance
OSA Open Service Access
P3P Platform for Privacy Preferences Project
PAP Policy Administration Point
PEP Policy Enforcement Point
PDP Policy Decision Point
PKI Public Key Infrastructure
SAML Security Assertion Markup Language
SLA Service Level Agreement
SMS Short Message Service
SOAP Simple Object Access Protocol

Service Profiling in Business to Business Web Services

 68

SwA SOAP with Attachments
TC Technical Committee
TCP Transfer Control Protocol
TCP/IP Transfer Control Protocol/Internet Protocol
UDDI Universal Description, Discovery and Integration
UN/CEFACT United Nations Centre for Trade Facilitation and Electronic

Business
URI Uniform Resource Identifier
XACML eXtensible Access Control Markup Language
XML eXtensible Markup Language
XML-RPC XML Remote Procedure Call
XrML eXtensible rights Markup Language
W3C World Wide Web Consortium
WML Wireless Markup Language
WS-CAF Web services Composite Application Framework
WS-CF Web Service Coordination Framework
WS-CTX Web Service Context
WS-TXM Web Service Transaction Management
WS-I Web Services Interoperability Organization
WSC Web Service Consumer
WSCI Web Services Choreography Interface
WSDD Web Service Deployment Descriptor
WSDL Web Services Description Language
WSDM Web Services Distributed Management
WSFL Web Services Flow Language
WSIA Web Services for Interactive Applications
WSIL Web Service Inspection Language
WSP Web Service Provider
WSRP Web Services for Remote Portlets
WSUI Web Services User Interface
WSXL Web Services eXperience Language

Service Profiling in Business to Business Web Services

 69

Appendix 1: SendSMS BPEL source

Below is the BPEL source code of the SendSMS service discussed in chapter
9.

<process name="SendSMS"
targetNamespace="urn:SendSMS"
suppressJoinFailure="yes"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:tns="urn:SendSMS"
xmlns:log="urn:LogService"
xmlns:optout="urn:OptOutCheckService"
xmlns:send="urn:SendMessageService"
xmlns:not="urn:DeliveryNotificationService"
xmlns:charge="urn:ChargeService"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <!-- links to the web service requester (client) and other web services -->
 <partnerLinks>
 <partnerLink name="client" partnerLinkType="tns:SendSMSLink" myRole="service"/>
 <partnerLink name="LogService" partnerLinkType="log:LogServiceLink" partnerRole="service"/>
 <partnerLink name="OptOutCheckService" partnerLinkType="optout:OptOutCheckServiceLink" partnerRole="service"/>
 <partnerLink name="SendMessageService" partnerLinkType="send:SendMessageServiceLink" partnerRole="service"/>
 <partnerLink name="DeliveryNotificationService" partnerLinkType="not:DeliveryNotificationServiceLink"
 partnerRole="serviceProvider" myRole="serviceRequester"/>
 <partnerLink name="ChargeService" partnerLinkType="charge:ChargeServiceLink" partnerRole="service"/>
 </partnerLinks>

 <!-- declaration of variables representing exchanged messages -->
 <variables>
 <variable name="request" messageType="tns:SendSMSRequest"/>
 <variable name="response" messageType="tns:SendSMSResponse"/>
 <variable name="error" messageType="tns:errorMessage"/>

 <variable name="logRequest" messageType="log:writeToLogRequest"/>
 <variable name="logResponse" messageType="log:writeToLogResponse"/>

 <variable name="optoutRequest" messageType="optout:checkOptOutRequest"/>
 <variable name="optoutResponse" messageType="optout:checkOptOutResponse"/>

 <variable name="sendRequest" messageType="send:sendRequest"/>
 <variable name="sendResponse" messageType="send:sendResponse"/>

 <variable name="registerNotification" messageType="not:registerNotification"/>
 <variable name="notification" messageType="not:notification"/>

 <variable name="chargeRequest" messageType="charge:chargeRequest"/>
 <variable name="chargeResponse" messageType="charge:chargeResponse"/>
 </variables>

 <!-- the process description -->
 <scope variableAccessSerializable="no">

 <!-- fault handlers -->
 <faultHandlers>
 <catch faultName="tns:userSignedOptOut">
 <sequence>
 <assign>
 <copy>
 <from expression="'User signed opt-out, so the message was not sent.'"/>
 <to variable="error" part="description" query="/description"/>
 </copy>
 </assign>
 <reply partnerLink="client" portType="tns:SendSMS" operation="send" variable="error"
 faultName="tns:userSignedOptOut"/>
 </sequence>
 </catch>
 <catch faultName="tns:sendFailed">
 <sequence>
 <assign>
 <copy>

Service Profiling in Business to Business Web Services

 70

 <from expression="'Send failed. Please try again later.'"/>
 <to variable="error" part="description" query="/description"/>
 </copy>
 </assign>
 <reply partnerLink="client" portType="tns:SendSMS" operation="send" variable="error" faultName="tns:sendFailed"/>
 </sequence>
 </catch>
 <catchAll>
 <sequence>
 <assign>
 <copy>
 <from expression="'Unknown exception occured'"/>
 <to variable="error" part="description" query="/description"/>
 </copy>
 </assign>
 <reply partnerLink="client" portType="tns:SendSMS" operation="send" variable="error"
 faultName="tns:unknownException"/>
 </sequence>
 </catchAll>
 </faultHandlers>

 <!-- the process -->
 <sequence>

 <!-- receive initial request -->
 <receive partnerLink="client" portType="tns:SendSMS" operation="send" variable="request" createInstance="yes"/>

 <!-- invoke LogService and OptOutCheckService in parallel -->
 <flow>

 <!-- invoke LogService -->
 <sequence>
 <assign>
 <copy>
 <from expression="concat('LogService invoked for ',
 bpws:getVariableData('request','SMS','/SMS/phoneNumber'))"/>
 <to variable="logRequest" part="event" query="/event"/>
 </copy>
 </assign>
 <invoke partnerLink="LogService" portType="log:LogService" operation="writeToLog" inputVariable="logRequest"
 outputVariable="logResponse"/>
 </sequence>

 <!-- invoke OptOutCheckService -->
 <sequence>
 <assign>
 <copy>
 <from variable="request" part="SMS" query="/SMS/phoneNumber"/>
 <to variable="optoutRequest" part="phoneNumber"/>
 </copy>
 </assign>
 <invoke partnerLink="OptOutCheckService" portType="optout:OptOutCheckService" operation="checkOptOut"
 inputVariable="optoutRequest" outputVariable="optoutResponse"/>
 </sequence>

 </flow>

 <!-- check result of OptOutCheckService -->
 <switch>
 <case condition="bpws:getVariableData('optoutResponse','checkOptOutReturn')='true'">
 <!-- user signed opt-out: reply with SOAP fault "userSignedOptOut" -->
 <throw faultName="tns:userSignedOptOut"/>
 </case>
 <otherwise>
 <empty/>
 </otherwise>
 </switch>

 <!-- invoke SendMessageService -->
 <assign>
 <copy>
 <from variable="request" part="SMS" query="/SMS/phoneNumber"/>
 <to variable="sendRequest" part="phoneNumber" query="/phoneNumber"/>
 </copy>
 </assign>
 <assign>

Service Profiling in Business to Business Web Services

 71

 <copy>
 <from variable="request" part="SMS" query="/SMS/sender"/>
 <to variable="sendRequest" part="sender" query="/sender"/>
 </copy>
 </assign>
 <assign>
 <copy>
 <from variable="request" part="SMS" query="/SMS/message"/>
 <to variable="sendRequest" part="message" query="/message"/>
 </copy>
 </assign>
 <scope variableAccessSerializable="no">
 <faultHandlers>
 <catchAll>
 <throw faultName="tns:sendFailed"/>
 </catchAll>
 </faultHandlers>
 <invoke partnerLink="SendMessageService" portType="send:SendMessageService" operation="send"
 inputVariable="sendRequest" outputVariable="sendResponse"/>
 </scope>

 <!-- reply true to client -->
 <assign>
 <copy>
 <from expression="'true'"/>
 <to variable="response" part="result" query="/result"/>
 </copy>
 </assign>
 <reply partnerLink="client" portType="tns:SendSMS" operation="send" variable="response"/>

 <!-- invoke DeliveryNotificationService -->
 <assign>
 <copy>
 <from variable="sendResponse" part="sendReturn" query="/sendReturn"/>
 <to variable="registerNotification" part="messageIdentifier" query="/messageIdentifier"/>
 </copy>
 </assign>
 <invoke partnerLink="DeliveryNotificationService" portType="not:DeliveryNotificationService" operation="register"
 inputVariable="registerNotification"/>

 <!-- wait for notification or timeout -->
 <pick>
 <!-- wait for message... -->
 <onMessage partnerLink="DeliveryNotificationService" portType="not:DeliveryNotificationServiceCallback"
 operation="notification" variable="notification">
 <empty/>
 </onMessage>
 <!-- ...or assign false to result after 1 minute -->
 <onAlarm for="PT1M">
 <assign>
 <copy>
 <from expression="'false'"/>
 <to variable="notification" part="result" query="/result"/>
 </copy>
 </assign>
 </onAlarm>
 </pick>

 <!-- invoke ChargeService if notification reports success -->
 <switch>
 <case condition="bpws:getVariableData('notification','result')='true'">
 <!-- invoke ChargeService -->
 <sequence>
 <assign>
 <copy>
 <from variable="request" part="SMS" query="/SMS/sender"/>
 <to variable="chargeRequest" part="who"/>
 </copy>
 </assign>
 <assign>
 <copy>
 <from expression="'0.16'"/>
 <to variable="chargeRequest" part="amount" query="/amount"/>
 </copy>
 </assign>
 <invoke partnerLink="ChargeService" portType="charge:ChargeService" operation="charge"

Service Profiling in Business to Business Web Services

 72

 inputVariable="chargeRequest" outputVariable="chargeResponse"/>
 </sequence>
 </case>
 <otherwise>
 <!-- log the failure of the notification -->
 <sequence>
 <assign>
 <copy>
 <from expression="'Notification: send failed, no charging'"/>
 <to variable="logRequest" part="event" query="/event"/>
 </copy>
 </assign>
 <invoke partnerLink="LogService" portType="log:LogService" operation="writeToLog"
 inputVariable="logRequest" outputVariable="logResponse"/>
 </sequence>
 </otherwise>
 </switch>

 </sequence>
 </scope>
</process>

Service Profiling in Business to Business Web Services

 73

Appendix 2: SendSMS WSDL

Below is the WSDL document of the SendSMS BPEL process. This is not the
complete WSDL document, but only the abstract description. Bindings and
the endpoint are added when the SendSMS process is deployed on the
Collaxa BPEL server.

<definitions name="SendSMS"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="urn:SendSMS"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="urn:SendSMS">

 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified" targetNamespace="urn:SendSMS"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="SMS">
 <complexType>
 <sequence>
 <element name="sender" type="string"/>
 <element name="phoneNumber" type="string"/>
 <element name="message" type="string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </types>

 <message name="SendSMSRequest">
 <part name="SMS" element="tns:SMS"/>
 </message>
 <message name="SendSMSResponse">
 <part name="result" type="xsd:boolean"/>
 </message>
 <message name="errorMessage">
 <part name="description" type="xsd:string"/>
 </message>

 <portType name="SendSMS">
 <operation name="send">
 <input message="tns:SendSMSRequest"/>
 <output message="tns:SendSMSResponse"/>
 <fault name="sendFailed" message="tns:errorMessage"/>
 <fault name="userSignedOptOut" message="tns:errorMessage"/>
 <fault name="unknownException" message="tns:errorMessage"/>
 </operation>
 </portType>

 <plnk:partnerLinkType name="SendSMSLink">
 <plnk:role name="service">
 <plnk:portType name="tns:SendSMS"/>
 </plnk:role>
 </plnk:partnerLinkType>

</definitions>

Service Profiling in Business to Business Web Services

 74

Service Profiling in Business to Business Web Services

 75

Appendix 3: How to install the software

This appendix is provided as a guide to installing the software needed for the
prototype and deploying the prototype and all other web services.

The software has been tested on Microsoft Windows 2000 and XP with a
recent Sun Java SDK (1.4.2). Since the total setup consists of two servers
running at the same time, it is advisable to have at least 512 MB RAM
installed.

The report comes with a CD that contains the software. There are a directory
Software that contains the server software and a few BPEL editors, and a
Webservices directory that contains the web services and the BPEL
processes.

First install the base and auxiliary services platform by installing Apache
Tomcat 4.1 and Apache Axis 1.1. The prototype expects Tomcat to be
installed on port 80. If you install Tomcat on another port you need to change
some of the WSDL files and deployment descriptors to include the right port
number. Please verify that Axis has been installed properly by validating you
Axis installation with the Axis Happiness Page. Then make sure Tomcat is
running and execute the deploy-webservices.bat file in the Webservices
directory on the CD to deploy the web services on Axis. You may need to
change some paths in the batch file to match your local configuration.

Since the Collaxa BPEL Server comes as an all-in-one package it is very
easy to install. Once you have installed the Collaxa BPEL Server you can
deploy the BPEL processes by executing deploy-
DeliveryNotificationService.bat and deploy-SendSMS.bat. Make sure you first
deploy the DeliveryNotificationService because the SendSMS process needs
this service.

Now you are set up to execute the process using the BPEL Console on
http://localhost:9700/BPELConsole or use an external tool. A link to the
WSDL of the SendSMS process can be found in the BPEL Console.

